Что надо сделать чтобы получить соль. Какая нужна соль для приготовления лекарства? Расскажем о том, как сделать кристалл из соли: необходимые расходные материалы и инструменты




Соли — органические и неорганические химические вещества сложного состава. В химической теории нет строгого и окончательного определения солей. Их можно охарактеризовать как соединения:
— состоящие из анионов и катионов;
— получаемые в результате взаимодействия кислот и оснований;
— состоящие из кислотных остатков и ионов металлов.

Кислотные остатки могут быть связаны не с атомами металлов, а с ионами аммония (NH 4)+, фосфония (РН 4)+, гидроксония (Н 3 О)+ и некоторыми другими.

Виды солей

— Кислотные, средние, оснóвные. Если в кислоте все протоны водорода заменены ионами металла, то такие соли называют средними, например, NaCl. Если водород замещен лишь частично, то такие соли — кислые, напр. KHSO 4 и NaH 2 PO 4 . Если гидроксильные группы (OH)- основания замещены кислотным остатком не полностью, то тогда соль — оснóвная, напр. CuCl(OH), Аl(OH)SO 4 .

— Простые, двойные, смешанные. Простые соли состоят из одного металла и одного кислотного остатка, например, K 2 SO 4 . В двойных солях два металла, например KAl(SO 4) 2 . В смешанных солях два кислотных остатка, напр. AgClBr.

— Органические и неорганические.
— Комплексные соли с комплексным ионом: K 2 , Cl 2 и другие.
— Кристаллогидраты и кристаллосольваты.
— Кристаллогидраты с молекулами кристаллизационной воды. CaSO 4 *2H 2 O.
— Кристаллосольваты с молекулами растворителя. Например, LiCl в жидком аммиаке NH 3 дает сольват LiCl*5NH 3 .
— Кислородосодержащие и не содержащие кислород.
— Внутренние, иначе называемые биполярными ионами.

Свойства

Большинство солей — твердые вещества с высокой температурой плавления, не проводящие ток. Растворимость в воде — важная характеристика, на ее основании реактивы делят на водорастворимые, малорастворимые и не растворимые. Многие соли растворяются в органических растворителях.

Соли реагируют:
— с более активными металлами;
— с кислотами, основаниями, другими солями, если в ходе взаимодействия получаются вещества, в дальнейшей реакции не участвующие, например, газ, нерастворимый осадок, вода. Разлагаются при нагревании, гидролизируются в воде.

В природе соли широко распространены в виде минералов, рассолов, залежей солей. Их добывают также из морской воды, горных руд.

Соли необходимы человеческому организму. Соли железа нужны для пополнения гемоглобина, кальция — участвуют в образовании скелета, магния — регулируют деятельность желудочно-кишечного тракта.

Применение солей

Соли активно используются в производстве, быту, сельском хозяйстве, медицине, пищепроме, химическом синтезе и анализе, в лабораторной практике. Вот лишь некоторые сферы их применения:

— Нитраты натрия , калия, кальция и аммония (селитры); кальций фосфорнокислый, хлорид калия — сырье для производства удобрений.
— Хлорид натрия необходим для получения пищевой поваренной соли, применяется в химпроме для производства хлора, соды, едкого натра.
— Гипохлорит натрия — популярный отбеливатель и средство для обеззараживания воды.
— Соли уксусной кислоты (ацетаты) используются в пищевой индустрии как консерванты (калий и кальций уксуснокислый); в медицине для изготовления лекарств, в косметической отрасли (натрий уксуснокислый), для многих других целей.
— Алюмокалиевые и хромокалиевые квасцы востребованы в медицине, пищепроме; для окрашивания тканей, кож, мехов.
— Многие соли используются в качестве фиксаналов для определения химического состава веществ, качества воды, уровня кислотности и пр.

В нашем магазине в широком ассортименте представлены соли, как органические так и неорганические.

Уже алхимики знали, что и земли, и щёлочи могут быть «нейтрализованы» кислотой. В результате такого процесса выделяется вода, а кислота и щёлочь превращаются в соль. Например, гидроксид кальция «гасится» соляной кислотой (можно сказать и наоборот: кислота «гасится» гидроксидом): Са(ОН)2 + 2НС1 = СаС12 + 2Н2O (образовалась соль — хлорид кальция); Ва(ОН)2 + H2SO4 = BaSO4 + Н2O (образовался сульфат бария); NaOH + НС1 = NaCl + + Н2O (образовался хлорид натрия).

В этих реакциях «кислотный признак» (атом водорода) соединился с «основным признаком» (группой ОН) с образованием воды.

То есть и кислота, и основание «исчезли», и в результате реакции нейтрализации получилась вода и хлорид натрия — нейтральное (то есть ни кислотное, ни щелочное) вещество.

Количественный закон для реакций нейтрализации впервые чётко сформулировал немецкий химик Иеремия Вениамин Рихтер (1762-1807) в конце XVIII века. В соответствии с этим законом, кислоты и основания реагируют друг с другом в строго определённых соотношениях.

Хлорид натрия — это обычная (поваренная) соль.

Солями стали называть и другие нейтральные продукты взаимного «уничтожения» кислот и оснований, причём далеко не все соли солёные, как хлорид натрия. Так, в реакции серной кислоты и основания — гидроксида железа Fe(OH)2 образуются соль FeSO4 — сернокислое железо (современное название — сульфат железа (II)) и вода: H2SO4 + Fe(OH)2 = FeSO4 + Н2O. Если серная кислота будет реагировать с гидроксидом трёхвалентного железа, Fe(OH) то получится другая сернокислая соль железа — сульфат железа (III): 3H2SO4 + + 2Fe(OH)3 = Fe2(SO4)3 + 6Н2O.

Запишем для тренировки ещё одну реакцию нейтрализации щёлочи органической (уксусной) кислотой: СН3СООН + NaOH = CH3COONa + H2O; в отличие от неорганических солей, в этой формуле атом металла принято записывать в конце.

Как видим, соли состоят из катиона металла, который «пришёл» из щёлочи, и аниона кислотного остатка, который «взялся» из кислоты. Вообще-то соли можно получать и без участия щелочей и кислот, например, из меди и серы при высокой температуре образуется сульфид меди: Си + S = CuS. Эта же соль образуется, если через раствор медного купороса пропускать сероводород (в воде он образует сероводородную кислоту): CuSO4+H2S = CuS + H2SO4.

Соли получаются не только в реакциях кислоты со щёлочью, но также в реакции кислоты с основным оксидом: H2SO4 + FeO = FeSO4 + Н2O; в реакции основания с кислотным оксидом: 2NaOH + СO2 = Na2CO3 + Н2O; в реакции кислотного оксида с основным: СаО + SiO2 = CaSiO, (эта реакция идёт при сплавлении веществ). Соль может образоваться и непосредственно при взаимодействии металла с кислотой; в этой реакции также выделяется водород.

Например, железо при растворении в серной кислоте образует соль — сульфат железа: Fe + H2SO4 = FeSO4 + Н2. С помощью именно этой реакции получали водород для наполнения воздушных шаров во времена Лавуазье.

В случае щелочных и щёлочноземельных металлов их реакцию с сильными кислотами, например реакцию натрия с соляной кислотой 2Na + 2НС1 = 2NaCl + + Н2, можно проводить только на бумаге, чтобы избежать несчастных случаев при взрыве. Конечно, не все кислоты и не все металлы вступают в такие реакции.

Прежде всего, металлы должны быть активными; к ним относятся щелочные и щёлочноземельные металлы (натрий, калий, кальций), магний, алюминий, цинк, в меньшей степени — железо, хром и др. С другой стороны, есть немало металлов, устойчивых к действию большинства кислот. Это в первую очередь так называемые благородные металлы — золото, платина, родий, иридий и др. Некоторые более активные металлы могут вытеснять из их солей менее активные, при этом получается другая соль, например: Fe + CuSO4 = FeSO4 + Сu. По способности вытеснять друг друга из растворов солей металлы можно расположить в ряд, который иногда называют рядом активности (а раньше называли вытеснительным рядом).

Соли получаются и в случае «перекрёстных» реакций, когда основный оксид реагирует с кислотой, а кислотный оксид реагирует с основанием. В этих реакциях образуются (если, конечно, реакция пойдёт, что бывает не всегда) соль и вода: ZnО + 2НС1 = ZnС12 + Н2О; SО2 + Ва(ОН)2 = BaSО3 + Н2О. Последнюю реакцию легче понять, представив её двухступенчатой.

Пусть сначала сернистый ангидрид прореагирует с водой: SO2 + Н2О = H2SО3 и образует сернистую кислоту, а затем эта кислота уже сможет вступить в обычную реакцию нейтрализации с гидроксидом бария. Возможны и реакции между солями.

Но такие реакции идут не всегда.

Например, они пойдут, если в результате реакции образуется осадок: Na2SО4 + ВаС12 = 2NaCl + BaSО4v (сульфат бария в воде не растворяется). Если же в реакции между двумя солями осадка не образуется, то такая реакция не пойдёт.

Например, если смешать сульфат натрия с хлоридом не бария, а цинка, то получится просто смесь солей: Na2SО4 + ZnС12 = 2NaCl + ZnSО4.

А можно ли из соли получить «обратно» металл, не используя другой, более активный металл?

Такой процесс возможен, если через раствор (например, медного купороса) или расплав (например, поваренной соли) пропустить электрический ток. Таким способом в промышленности и получают многие металлы: натрий, алюминий, медь и др. Активные металлы (натрий, калий и др.) с водой реагируют, поэтому таким способом их нельзя получить из водного раствора — только из расплава, причём в отсутствие кислорода.

Наконец, некоторые соли, образованные слабыми кислотами, могут реагировать с сильными кислотами, которые «вытесняют» слабые. Примером может служить реакция серной кислоты с карбонатом натрия (содой).

Карбонат — это соль слабой угольной кислоты Н2СО3, поэтому сильная серная кислота вытесняет слабую угольную из её солей: Na2СO3 + H2SO4 = Na2SO4 + H2CО3.

Угольная кислота не только слабая, но и неустойчивая (это разные понятия, например, борная кислота Н3ВО3 очень слабая, но вполне устойчивая), и выделившаяся в упомянутой реакции угольная кислота сразу же распадается на воду и углекислый газ: Н2СО3 = Н2О + СО2. Поэтому химики практически никогда не записывают в качестве продукта реакции формулу Н2СО3, а сразу пишут СО2 + Н2О.

Самую распространенную у нас соль (хлорид натря) получают из минерала Галит (от греческого Αλίτης - соль), состоящего почти полностью из того же NaCl.
Но вот это "почти" и составляет разницу. Природный минерал бывает разных цветовых оттенков в зависимости от примесей других минералов и микроорганизмов, а также окружающих глинистых пород и песчаников – белый, голубовато-серый, розовый, вишнево-красный, желто-коричневый. Интенсивность цвета зависит от соотношения в кристаллах чистого галита и механических примесей.

Гималайская соль (Пакистан)

Например, модная «гималайская соль» из соляных копей в Пакистане содержит около 92% галита, остальное – примеси. В основном – оксидов железа типа банальной ржавчины – бурые железняки, гематит и магнетит.
Большую часть добытой здесь соли подвергают рафинированию, получая обычную белую соль. Часть же добываемой в месторождении соли подвергают только первичной очистке - промывке, сушке и дроблению, и поставляют на рынок в виде мелкого светло- или насыщенно-розового порошка или кристаллов. Розовый цвет соли не играет никакого значения и не имеет никакой роли, не влияет ни на вкус, ни на запах, доставляя разве что эстетическое удовольствие любителям розового.:)) Ну и еще ее крупные кристаллы потрясающе смотрятся рядом с розовым перцем в мельнице.

Черная соль (Индия)

Похожая на нее внешне «черная соль» из месторождения в Индии (Дарджилинг?)Kala Namak имеет в своем составе кроме соединений железа, большое количество сульфатов и сульфидов натрия и других элементов, что обуславливает специфический запах ээээ… вареных вкрутую яиц, что, естественно, снижает ее популярность на мировом рынке. С другой стороны можно сказать, что это – ее пикантная отличительная особенность.

Эти две соли можно с чистым сердцем отнести к природным минеральным солям. А вот еще одна модная красная соль с Гавайских островов – продукт искусственного смешения гавайской глины и морской соли. На лицо трогательное единение, так сказать, химикатов моря и земли.

В России основную массу галита, добываемого из соленых озер или из-под земли, рафинируют, вываривая соляной раствор, образно говоря, получая из алмаза углерод.

Меньшую часть – оставляют как есть в виде сероватой соли помола №1.

Но нам тоже хочется разноцветной соли. И у нас их есть.

Черную соль с добавлением активированного угля, производят несколько фирм, позиционируя креатуру как легендарную «четверговую соль», практически полностью забытую. Пытаясь обратно создать из углерода - алмаз.

Мы не одиноки на этом празднике жизни. Black lava salt с активированным углем производится на Кипре и на Гавайях. Разумеется, в целях продвижения на рынке, ее также позиционируют как активный детоксикант, обладающий уникальным вкусом и весьма декоративным эффектом.
Визуальный эффект, кстати, будет еще краше, если смешать ее с хлопьями паприки.

Тот же хлорид натрия составляет главный солевой компонент всех морей и океанов, а также соляных озер и подземных вод. Так шо морская соль – это тот же NaCl и вся минеральная плюс органическая компания, которые вместе составляют до 98% состава соли.
Обычно морская вода горько-соленая, в зависимости от растворенных в ней минералов – за горечь обычно отвечает калий и магний, за соленый вкус – натрий, за камни в почках – кальций. :) Там, где состав морской воды это позволяет, выпаривание ведут в естественных условиях, получая природную морскую соль, но основную часть морской соли также рафинируют, удаляя горечь и большинство примесей.

Итак, минеральный состав морской соли несказанно богаче и зависит от климатических условий и состава морской воды. Продвигаемая на рынок глубоководная соль доказывает этот факт. Качая с огромной глубины морскую воду и испаряя ее затем в реакторах, производители гордятся присутствием в ней таких элементов как медь, селен, железо, цинк и т.д. То есть все, от чего стараются избавиться в рафинированной соли.
Не знаю, насколько полезен такой богатый микроэлементами состав. Все эти: бром, стронций, фтор, фосфор, бор, медь, цинк и остальная таблица Менделеева присутствуют в атмосфере мегаполиса, мы и так их ежедневно употребляем.:)

Что еще мы употребляем вместе с солью.
ХХ век начался с того, что впервые для улучшения сыпучести соли, в нее стали добавлять карбонат магния. И понеслось.
Последние по времени добавки – это добавки против слеживания и смерзания соли в мешках – гексоцианоферрат калия (E535). Пусть ферроцианид калия (К4х3H2O) и нейтральное вещество, все же его присутствие ограничено стандартами - не более 15г/тонну соли.

Попутно решили позаботиться о здоровье населения.
В 20-х годах в пищевую соль стали добавлять иодид или иодат калия для профилактики зоба, болезни щитовидной железы, возникающей при йододефиците. И делают это до сих пор.
Часть хлорида натрия в последнее время заменяют хлоридом калия. Считается, что такая соль более подходит людям с гипертоническими проблемами.

Наконец, еще одна очень известная добавка образует так называемую «посолочную смесь». Это нитрит натрия, NaNO2 (E250), который использовался и используется для сохранения окраски и как антибактериальный компонент, который действует на возбудитель ботулизма при посоле мяса и рыбы и приготовлении колбас. Нитрит натрия – токсическое вещество, применение которого также строго регламентируется.

Про разноцветнае соли-приправы я, наверное, все уши уже прожужжала. Но вот еще парочка.

КРАСНАЯ СОЛЬ
Французская Sel de Bayonne, которую я тут недавно купила вместе с прованскими травами, оказывается имеет статус АОС, несмотря на свои противослеживающие добавки, и идеально сочетается еще с одним местным специалитетом АОС – Piment de Espilett.
Что не мешает нам приготовить подобную смесь из любой подходящей соли и любого стручкового перца по вкусу. Пропорции для смеси – 85% соли и 15% перца в хлопьях или порошке, в зависимости от крупности взятой соли.

ЗЕЛЕНАЯ СОЛЬ ДЛЯ ЖАРЕНОГО МЯСА
Итальянская приправа salamoia, также недавно мною купленная, состоит скорее из трав с солью, чем из соли с травами. В составе - розмарин, шалфей, черный перец, чеснок – ну очень душистая и душевная штучка.
На сколько я разбираюсь в итальянском – salamoia означает просто «рассол». Почему так назвали эту соль с травами для меня загадка.

(с) shakherezada.livejournal.com

Соль мы воспринимаем как должное в качестве необходимой приправы к блюдам. Между тем это важное в кулинарии вещество является лекарем, магическим защитником и помощником в хозяйстве.

Для лечения соль чаще применяют в растворенном виде. Способы имеют ряд нюансов, о которых обязательно нужно узнать. Например, как сделать 10-процентный солевой раствор, если дома нет химических и мензурок? Сколько надо взять соли и воды? Рассмотрим простые варианты приготовления лечебных растворов.

Какая нужна соль для приготовления лекарства?

Перед тем как приготовить 10% солевой раствор, нужно внимательно изучить рецепт. Какое вещество в нем упоминается? Если поваренная соль, то подходят упаковки, на которых указано:

  • кухонная соль;
  • хлорид натрия;
  • пищевая соль;
  • каменная соль.

В быту употребляют слово «соль», хотя этот термин относится ко многим сложным веществам, образованным ионами или атомами металла и кислотными остатками. Кроме в лечебных целях используется английская соль — сульфат магния. Добывают вещества при разработке месторождений в земной коре.

Если выпаривать то получается морская соль, которая содержит натрий, магний, йод, хлорид-, сульфат-ионы и другие компоненты. Свойства такой смеси несколько отличаются от индивидуальных веществ. Обычно для лечения ран, больного горла, зубов готовят 1-10% солевой раствор хлорида натрия. Химическая формула соединения, которое обладает удивительными свойствами, — NaCl.

Какой должна быть степень чистоты компонентов?

Как сделать 10-процентный солевой раствор в домашних условиях, чтобы лекарство пошло на пользу, а не во вред организму? Соль тоже должна быть максимально чистой, но приобретенная в магазине "Каменная" часто загрязнена примесями. Есть более чистый продукт мелкого помола.

В некоторых рецептах рекомендуется применять снеговую или дождевую воду, но это неудачная идея с точки зрения современной экологии. Чистота той жидкости, что течет в системах хозяйственно-питьевого водоснабжения, тоже вызывает много нареканий. Она, как снег и дождь, может быть загрязнена хлором, железом, фенолом, нефтепродуктами, нитратами. Уточним, что в качестве растворителя в медицине применяется дистиллированная либо деминерализованная вода. Дома для приготовления раствора можно взять фильтрованную либо кипяченую воду.

Если поставить пластиковые формочки с водой в морозильник, то сначала замерзнет чистая вода, а примеси будут скапливаться на дне. Не дожидаясь полного промерзания, надо собрать лед с поверхности и растопить. Получится очень чистая и полезная вода.

Как измерить массу соли и объем воды для приготовления раствора?

Все необходимое следует собрать заранее, до того как сделать 10-процентный Потребуются для работы вода, мензурка, пакетик с солью, весы, стакан и ложка (столовая, десертная либо чайная). Фото ниже поможет определить массу соли, которая содержится в десертной и чайной ложках.

Затем необходимо определиться с единицами измерения для жидкости. Считается, что масса 100 мл чистой пресной воды равна 100 г (плотность пресной воды — 1г/мл). Жидкости можно отмерить мензуркой, если ее нет, то подойдет обычный стакан из тех, что называют «гранеными». Наполненный до риски, он содержит 200 мл воды (или г). Если налить до самого верха, то получится 250 мл (250 г).

Что означает выражение «10-процентный раствор»?

Концентрацию веществ принято выражать несколькими способами. Чаще всего в медицине и быту используется такая величина, как весовой процент. Она показывает, сколько грамм вещества содержится в 100 г раствора. Например, если в рецепте говорится, что применяется 10% солевой раствор, то в каждых 100 г такого препарата содержится 10 г растворенного вещества.

Допустим, нужно приготовить 200 г 10% раствора соли. Проведем несложные расчеты, не занимающие много времени:

В 100 г раствора содержится 10 г вещества; в 200 г раствора содержится х г вещества.
х = 200 г х 10 г: 100 г = 20 г (соли).
200 г - 20 г = 180 г (воды).
180 г х 1 г/мл = 180 мл (воды).

Как приготовить 10% солевой раствор?

Если в доме есть весы и мензурка, то массу соли и объем воды лучше измерять с их помощью. Набрать чайную ложку «с верхом» и налить стакан воды до риски тоже можно, но такие измерения грешат неточностями.

Как сделать 10-процентный солевой раствор, чтобы получилось 100 г препарата? Следует отвесить 10 г твердого хлорида натрия, налить в стакан 90 мл воды и насыпать соль в воду, помешивая ложечкой до растворения. Смешивают соль с теплой водой либо холодной, а затем посуду с компонентами нагревают. Для лучшего очищения готовый раствор пропускают через комочек ваты (фильтруют).

Приготовить 50 г 10% раствора можно из 45 мл воды и 5 г соли. Солевой делают из 1 л воды и 100 г хлорида натрия (4 столовые ложки «без верха»).

Лечение 10% солевым раствором

В медицине на свежей дистиллированной воде готовят 0,9%-й раствор солей, который называют «физиологическим». Эта жидкость является изотонической по отношению к внутренней среде человеческого организма (имеет такую же концентрацию). Применяется при проведении различных лечебных процедур, в частности, как заменитель крови, для устранения последствий обезвоживания, интоксикации.

Гипертонический раствор содержит больше соли, при соприкосновении с изотонической либо гипотонической жидкость он притягивает воду до выравнивания концентраций. Такое осмотическое влияние используется в народных рецептах для очищения ран от гноя. Соль обладает антисептическими, противомикробными свойствами, ее гипертонические растворы находят применение в альтернативной медицине:

  • при заболеваниях внутренних органов — в виде солевой повязки на очаг боли;
  • как примочки, компрессы и аппликации при кожных и других инфекциях;
  • как солевые ванночки при усталости и болях в кистях рук и стопах ног;
  • для очищения гнойных ран.

Лечение гипертоническим 10% солевым раствором потребует времени, может занять несколько дней или недель. Минимальное количество процедур — 4-7. При болях в горле используется 3-5% гипертонический раствор для полосканий утром и вечером. Носовую полость промывают Для его приготовления нужно добавить в 237 мл воды кипяченой воды 1,2 г хлорида натрия и 2,5 г питьевой соды.

Cтраница 2


Реакции при смешивании солей не происходит. Однако вследствие добавления электролита с одноименным ионом в растворе увеличивается концентрация ионов К в первом случае и концентрация ионов СЮ-3 во втором. Из-за этого в обеих колбах выпадет осадок КСЮз, следовательно, осадок выпадает только потому, что ионы К и С1О - 3 в полученном растворе присутствуют в большем количестве, чем в насыщенном.  

Двойные фосфо р-н о-калийные удобрения. Их получают путем смешивания солей калия с фосфоритной мукой, томасшлаком, суперфосфатом, дикаль-цийфосфатом и др., они содержат очень разные количества компонентов. Их применяют в таких же условиях, как и их составные части.  

Разработка технологического процесса для терригенных коллекторов, где содержание карбонатного материала довольно низко и, следовательно, образование геля проблематично. Для таких условий предложено смешивание солей алюминия со щелочными растворами. Образующийся при этом гидрооксид алюминия снижает проницаемость водопроводящих каналов продуктивного пласта.  

Возбуждение может быть также достигнуто катодными лучами, как в телевизионной трубке, или рентгеновскими лучами - как во флоуроскопе. Обычным методом применения радиоактивного возбуждения является смешивание солей радия или тория с пигментами. Эта смесь вводится в связующее. Такие радиоактивные краски имеют свойство сохранять яркость без внешнего источника возбуждения. О применении этих красок будет сказано ниже. Обычно используемые для радиоактивного возбуждения пигмента - сульфиды цинка и некоторые сульфиды цинк-кадмия.  

Все химикаты должны оцениваться на предмет их потенциальной токсичности и физической опасности, заменяться менее опасными, если это возможно. Однако менее ядовитый материал может оказаться, например, более огнеопасным, следует принимать во внимание химическую совместимость материалов (так, случайное смешивание солей нитрата и солей циановой кислоты чревато взрывом), поэтому очень важно правильно расставить приоритеты.  

По различным данным в этих соединениях от 2 до 4 или 6 атомов молибдена (из общего числа 12) восстановлены до пятивалентного состояния. При смешивании солей пяти - и шестивалентного молибдена в слабокислой среде также образуются молибденовые сини различного состава. Эти соединения разлагаются в сильнокислой среде; между тем в присутствии фосфорной или кремневой кислоты они устойчивы.  

Применяется на месторождениях с неоднородными пластами, имеющими высокопроницаемые пропластки, и при прорыве воды по отдельным прослоям и зонам. Сущность данного метода заключается в образовании гидрооксидалюминия при смешивании солей алюминия с щелочными растворами. Работы проводятся с использованием серийно выпускаемого оборудования, применяемого при капитальном и текущем ремонте скважин.  

Подготовленные составляющие тщательно смешиваются. Последовательность введения компонентов зависит от состава флюса. При наличии в составе флюса хлористого лития, отличающегося особо высокой гигроскопичностью, его нужно вводить в смесь после смешивания негнгроскопичных солей.  

Смешивание возможно в различных аппаратах в зависимости от вида смешиваемых компонентов. Для смешивания порошков обычно применяют вибро - или шаровые мельницы, причем в данном случае одновременно со смешиванием происходит измельчение материалов. Для смешивания порошков ферритизированных масс с пластификатором применяют либо лопастные мешалки, либо протирочные машины. Смешивание солей при синтезе по способу термического разложения солей происходит в обычных стальных баках, так как при кипении растворов одновременно происходит их интенсивное перемешивание.  

Для приготовления утяжеленного раствора используют сточную или минерализованную пластовую, воду. Сточная или минерализованная пластовая вода (рис. 10) поступает по коллектору в приемные резервуары, где происходит предварительный отстой ее от механических примесей и остаточной нефти, для сброса которой предусмотрены плавающая труба и насос. Из промежуточной емкости насосом под давлением 1 0 - 1 2 МПа ее подают в гидросмеситель. Одновременно с этим при помощи транспортера в гидросмеситель подают хлористый кальций. Происходит смешивание соли и воды с последующим растворением. Количество подаваемой соли должно соответствовать заданной плотности задавочной жидкости.  

Для приготовления утяжеленного раствора используют сточную или минерализованную пластовую воду. Сточная или минерализованная пластовая вода (рис, 10) поступает по коллектору в приемные резервуары, где происходит предварительный отстой ее от механических примесей и остаточной нефти, для сброса которой предусмотрены плавающая труба и насос. Из промежуточной емкости насосом под давлением 1 0 - 1 2 МПа ее подают в гидросмеситель. Одновременно с этим при помощи транспортера в гидросмеситель подают хлористый кальций. Происходит смешивание соли и воды с последующим растворением. Количество подаваемой соли должно соответствовать заданной плотности задавочной жидкости.  

Обычно применяют сернокислые соли, у которых температура удаления кристаллизационной воды 280 - 300 С. Смесь сухих солей, рассчитанную по составу на формулу желаемого феррита, нагревают до 60 - 70 С с добавлением небольшого количества дистиллированной воды. При 60 - 70 С смесь расплавляется, а при 100 - 120 С закипает. Смесь нагревают до температуры, превышающей температуру разложения солей на 10 - 20 С, т.е. до 300 - 320 С. При нагреве происходит молекулярное смешивание солей, и при температуре, соответствующей потере кристаллизационной воды, смесь затвердевает. Обожженная смесь солей прокаливается при температуре 950 - 1100 С до полного удаления кислотного остатка. Прокаливание следует вести при хорошей вентиляций и поглощении отходящих газов. Прокаленный спек измельчают и из порошка прессуют, брикеты, которые обжигают при 900 - 1000 С. Обожженные брикеты вновь дробят, измельчают в шаровой или вибрационной мельнице до необходимой дисперсности; подготовленный порошок поступает на изготовление изделия тем или иным способом непластичной технологии. Обжиг изделий будет рассмотрен далее.  

Как бы то ни было, но, основываясь на многих наблюдениях над действием крепкой соляной кислоты на жидкость, кипящую выше 160, и над легким превращением нитрила в триметилуксусную кислоту под влиянием той же кислоты, я нашел более выгодным для получения триме-тилуксусной кислоты обрабатывать соляной кислотой всю массу цианистого маслообразного продукта, получаемого, как сказано выше, действием при низкой температуре третичного йодистого бутила на двойную соль цианистой ртути с цианистым калием, смешанную с тальком. Продукт смешивается для этого с равным приблизительно объемом дымящейся соляной кислоты, и смесь, помещенная в запаянную трубку, нагревается до 100 в течение нескольких часов, причем не мешает ее взбалтывать время от времени. По окончании реакции трубка содержит массу кристаллов нашатыря с примесью хлористого бутил амина [ с третичным бутилом в составе ]; масса эта пропитана водным раствором тех же солей и маслообразной жидкостью, состоящей главным образом из триметил-уксусной кислоты. При открывании трубки замечается в ней некоторое давление. При прибавлении воды и смешивании соли растворяются, и мас-ловсшшвает. Небольшое количество [ триметилуксусной ] кислоты остается в водном растворе и может быть отделено от него перегонкой и насыщением дестиллята. Все масло обрабатывается едким щелоком8, раствор процеживается и выпаривается досуха; соляная масса вытягивается спиртом, который [ растворяет соль триметилуксусной кислоты и ] оставляет нерастворенным хлористый металл. Спиртовой раствор, выпаренный досуха, дает массу триметилуксусной соли, из крепкого водного раствора которой кислота выделяется серной кислотой, разведенной двумя частями воды. Высушенная сначала безводным сернокислым натром, а потом фосфорным ангидридом, триметилуксусная кислота подвергается нескольким перегонкам и получается таким образом в довольно чистом бесцветном состоянии, тотчас застывает в кристаллическую массу. Достичь большего выхода мне покамест не удалось, но и этот результат несравненно благоприятнее, чем тот, который достигается при употреблении [ только ] чистой цианистой ртути [ без цианистого калия ] и при обработке продукта едким кали.