История развития микробиологии в 18 20 вв. История развития науки «Микробиология




Со времен глубокой древности, задолго до открытия микроорганизмов, человек использовал такие микробиологические процессы, как сбраживание виноградного сока, скисание молока, приготовление теста. В старинных летописях описываются опустошительные эпидемии чумы, холеры и других заразных болезней.

Микробиология является сравнительно молодой наукой. Начало ее развития относится к концу XVII в.

Первое обстоятельное наблюдение и описание микроорганизмов принадлежит Антонию Левенгуку (1632–1723 гг.), который сам изготовлял линзы, дававшие увеличение в 200– 300 раз. В книге «Тайны природы, открытые Антонием Левенгуком» (1695 г.) он не только описал, но и дал зарисовки многих микроорганизмов, обнаруженных им с помощью своего «микроскопа» в различных настоях, дождевой воде, на мясе и других объектах 1 .

Открытия Левенгука вызвали живейший интерес ученых. Однако слабое развитие в XVII и XVIII вв. промышленности и сельского хозяйства, господствующее в науке схоластическое направление препятствовали развитию естественных наук, в том числе и зарождающейся микробиологии. Долгое время наука о микробах носила в основном описательный характер. Этот так называемый морфологический период развития микробиологии был малоплодотворным.

Одной из ранних работ, посвященных изучению природы и происхождения микроорганизмов, была диссертация М. М. Тереховского, опубликованная в 1775 г. Автор впервые применил экспериментальный метод исследований. Он изучал влияние на микроорганизмы нагревания и охлаждения, а также воздействия различных химических веществ. Исследования М. М. Тереховского остались малоизвестными, хотя имели большое принципиальное значение. Долго еще не было определено место микроорганизмов среди других живых существ, их роль и значение в природе и в жизни человека.

1 В 1698 г. Петр I посетил Левенгука и привез микроскоп в Россию.

Прогресс промышленности в XIX в., вызвавший развитие техники и различных отраслей естествознания, обусловил быстрое развитие микробиологии, возросло ее практическое значение. Из науки описательной микробиология превратилась в опытную науку, изучающую роль «загадочных» организмов в природе и жизни человека. Появились более совершенные микроскопы, улучшилась техника микроскопирования.



Начало нового направления в развитии микробиологии – физиологического периода связано с деятельностью французского ученого Луи Пастера (1822–1895 гг.) основоположника современной микробиологии. Пастер установил, что микроорганизмы различаются не только внешним видом, но и характером жизнедеятельности. Они вызывают разнообразные химические превращения в субстратах (средах), на которых развиваются.

Пастеру принадлежит ряд исключительно важных открытий. Он доказал, что происходящее в виноградном соке спиртовое брожение обусловлено жизнедеятельностью микроорганизмов – дрожжей. Это открытие опровергло господствующую в то время теорию Либиха о химической природе процесса брожения. Изучая причины болезни вина и пива, Пастер доказал, что виновниками их являются микроорганизмы. Чтобы предотвратить порчу, он предложил прогревать напитки. Этот прием применяют и в настоящее время и называют пастеризацией.

Пастер впервые обнаружил бактерии, не способные развиваться в присутствии воздуха, т. е. показал, что жизнь возможна и без кислорода.

Пастер открыл природу заразных болезней человека и животных, установил, что эти болезни возникают вследствие инфекции (заражения) особыми микробами и что каждое заболевание вызывается определенным микроорганизмом. Он разработал и научно обосновал метод предупреждения заразных болезней (предохраняющие прививки), изготовил вакцины против бешенства и сибирской язвы.

Значительным вкладом в микробиологию явились исследования немецкого ученого Роберта Коха (1843–1910 гг.). Им были введены в микробиологическую практику плотные питательные среды для выращивания микроорганизмов, что привело к разработке метода выделения микроорганизмов в так называемые чистые культуры, т. е. выращивание культур (массы клеток) каждого вида в отдельности (изолированно). Это позволило обнаружить неизвестные ранее микроорганизмы и выявить особенности жизнедеятельности отдельных представителей этого мира живых существ. Кох изучал также возбудителей многих заразных болезней (сибирской язвы, туберкулеза, холеры и др.).

Развитие микробиологии неразрывно связано с работами русских и советских ученых.

Всемирно известны работы И. И.Мечникова (1845 1916 гг.). Он впервые разработал фагоцитарную теорию иммунитета, т. е. невосприимчивости организма к заразным болезням. С именем И. И. Мечникова тесно связано развитие микробиологии в России. Он организовал первую в России бактериологическую лабораторию (в Одессе).

Ближайшим соратником И. И. Мечникова был Η. Φ. Гамалея (1859–1949 гг.), изучивший многие вопросы медицинской микробиологии. Η. Φ. Гамалея организовал в Одессе (в 1886 г.) первую в России станцию по прививкам против бешенства (вторую в мире после Пастеровской станции в Париже). Вся его деятельность была направлена на решение важнейших вопросов здравоохранения в нашей стране.

Большое значение для развития микробиологии, особенно сельскохозяйственной, имели труды С. Н. Виноградского (1856 – 1953 гг.). Он открыл процесс нитрификации, установил существование особых бактерий, которые способны ассимилировать углекислый газ из воздуха, используя в процессе синтеза органических веществ химическую энергию реакции окисления аммиака до азотной кислоты. Так была доказана возможность ассимиляции углекислого газа без участия хлорофилла и солнечной энергии. Этот процесс в отличие от фотосинтеза зеленых растений был назван хемосинтезом.

С. Н. Виноградский открыл явление фиксации атмосферного азота анаэробными бактериями. Им также найдены бактерии анаэробного разложения пектиновых веществ, что в дальнейшем позволило исследователям (И. А. Макринову, Г. Л. Сели-беру и др.) разработать теорию и приемы мочки волокнистых растений – льна, конопли и др.

В своих исследованиях С. Н. Виноградский пользовался разработанным им оригинальным методом выращивания микроорганизмов с применением специальных – элективных (избирательных) – питательных сред и условий, приближенных к естественному обитанию микроорганизмов. Этот метод получил широкое применение во всех областях микробиологии. Он позволил не только открыть новые виды микроорганизмов, но и более глубоко изучить известные.

Учеником и сотрудником С. Н. Виноградского был В. Л. Омелянский (1867–1928 гг.). Вместе с С. Н. Виноградский он изучал вопросы нитрификации, фиксации атмосферного азота и другие проблемы микробиологии. В. Л. Омелянский создал первый русский учебник по микробиологии «Основы микробиологии» и первое русское «Практическое руководство по микробиологии». Эти книги до сих пор не утратили своей ценности.

Большим вкладом в развитие общей микробиологии явились труды А. А. Имшенецкого, Ε. Η. Мишустина, С. И. Кузнецова, Н. Д. Иерусалимского, Ε. Η. Кондратьевой и других советских ученых.

В развитии технической микробиологии важную роль сыграли работы С. П. Костычева, С. Л. Иванова и А. И. Лебедева, изучавших процесс спиртового брожения.

На основании исследований С. П. Костычева и В. С. Бутке-вича химизма образования органических кислот грибами в нашей стране в 1930 г, было организовано производство лимонной кислоты.

В. Η. Шапошников и А. Я. Мантейфель изучали и внедрили в заводскую практику способ производства молочной кислоты с помощью бактерий. Исследования В. Н. Шапошникова и Ф. М. Чистякова дали возможность еще в начале 30-х годов организовать в заводском масштабе производство ацетона и бутилового спирта с помощью бактерий.

В. Н. Шапошников написал первый в СССР учебник «Техническая микробиология» (1947 г.), за который в 1950 г. получил Государственную премию.

В области пищевой микробиологии, непосредственно связанной с товароведением, большая роль принадлежит Я. Я. Никитинскому (1878–1941 гг.). Он создал курс пищевой микробиологии и совместно с Б. С. Алеевым написал специальный курс микробиологии скоропортящихся пищевых продуктов, а также руководство к практическим работам по микробиологии для студентов, изучающих товароведение продовольственных товаров. Труды Я. Я· Никитинского и его учеников положили начало широкому развитию микробиологии консервного производства и холодильного хранения скоропортящихся пищевых продуктов. Значительные успехи в области микробиологии молока и молочных продуктов были достигнуты школой С. А. Королева (1876 – 1932 гг.) в Вологодском молочном институте А.Ф.Войткевичем (1875–1950 гг.) в Московской сельскохозяйственной академии имени К- А. Тимирязева.

В последующем микробиология молочного дела развивалась в работах В. М. Богданова, Н. С. Королевой, А. М. Скородумовой, Л. А. Банниковой.

Большой вклад в теорию и практику холодильного хранения пищевых продуктов внес Φ. Μ. Чистяков (1898–1959 гг.).

До Великой Октябрьской социалистической революции в нашей стране насчитывались единичные бактериологические учреждения. В настоящее время в стране имеется широкая сеть научно-исследовательских учреждений по различным разделам микробиологической науки, организованы отделы микробиологии при Академии наук СССР и республиканских академиях. Имеется значительное число производств, в технологии которых главное место занимают микробиологические процессы. Возникают новые отрасли биохимической промышленности, основанные на применении плесневых грибов, бактерий и других микроорганизмов. В 1960 г. создана микробиологическая промышленность, в технологических процессах которой используются микроорганизмы – продуценты ценнейших биологически активных веществ (антибиотиков, белка, аминокислот, ферментов, витаминов, гормонов и др.).

Получила развитие и микробиология пищевых продуктов. Все крупные отрасли пищевой промышленности имеют научно-исследовательские институты, в состав которых входят лаборатории, изучающие микробиологию данной отрасли производства. На всех предприятиях пищевой промышленности созданы заводские и цеховые микробиологические лаборатории, контролирующие производство и качество готовой продукции.

«Трудно переоценить роль микроорганизмов на нашей планете,– указывал академик В. О. Таусон,– скорее можно недооценить то значение, которое имеет мир этих существ для всего живого, настолько многообразна их деятельность и грандиозны ее последствия».

В Основных направлениях экономического и социального развития СССР на 1981–1985 годы и на период до 1990 года уделено большое внимание дальнейшему развитию пищевой промышленности, общественного питания и торговли. Предусматривается увеличение выпуска готовых к употреблению продуктов, полуфабрикатов, кулинарных изделий, улучшение их качества и ассортимента, обогащение продуктов белками, витаминами и другими полезными компонентами. Многие из этих компонентов могут быть микробного происхождения, в том числе и белок. Предусматривается i осуществить мероприятия по ускоренному развитию производств на основе микробного синтеза, обеспечить рост выпуска продукции в 1,8–1,9 раза, значительно увеличить производство товарного кормового микробиального белка и лизина, а также антибиотиков для кормовых и ветеринарных целей, кормовых витаминов, микробиологических средств защиты растений, ферментных препаратов, бактериальных удобрений и другой продукции микробного синтеза.

Создание электронного микроскопа и разработка новых методов исследований микроорганизмов позволяют изучать их на молекулярном уровне, что в свою очередь дает возможность более глубоко познать свойства микробов, их химическую деятельность, лучше использовать и управлять микробиологическими процессами.

Микробиологической науке принадлежит большая роль в выполнении основной задачи, поставленной перед пищевой и легкой промышленностью, торговлей и общественным питанием,– наиболее полном удовлетворении постоянно растущих потребностей советского народа.

1 Материалы XXVI съезда КПСС. М.: Политиздат, 1981, с. 170.

ТЕМА 1. ВВЕДЕНИЕ. МОРФОЛОГИЯ, ФИЗИОЛОГИЯ И КЛАССИФИКАЦИЯ БАКТЕРИЙ.

1. Предмет и задачи медицинской микробиологии.

2. История развития микробиологии.

3. Морфология бактерий.

4. Физиология бактерий.

5. Классификация бактерий.

6. Методы изучения морфологии и свойств бактерий.

Предмет и задачи медицинской микробиологии.

Микробиология (от греч. micros – малый, bios – жизнь, logos – учение) наука о микроорганизмах, закономерностях их развития и тех изменениях, которые они вызывают в среде обитания и в окружающей среде.

Размеры микроорганизмов < 0,1 мм, величина их измеряется в мкм.

Микробиология включает разделы:

o Общая – занимается изучением общих закономерностей микроорганизмов.

o Техническая – занимается разработкой биотехнологии синтеза микроорганизмами биологически-активных веществ: белков, витаминов, ферментов, антибиотиков, спиртов.

o Сельскохозяйственная – занимается изучением микроорганизмов, которые участвуют в круговороте веществ, используются для приготовления удобрений, вызывают заболевания растений и др..

o Ветеринарная – изучает возбудителей заболеваний животных, разрабатывает методы диагностики, профилактики и лечения животных.

o Санитарная – изучает санитарно-микробиологическое состояние объектов окружающей среды, её влияние на здоровье человека и разрабатывает мероприятия, предупреждающие неблагоприятные воздействия болезнетворных микробов.

o Морская – изучает микрофлору морей и океанов.

o Космическая – изучает микрофлору космического пространства, влияние космических условий на свойства микроорганизмов и микрофлору организма человека.

o Медицинская – изучает микроорганизмы патогенные и условно-патогенные для человека, их экологию и распространённость, методы их выделения и идентификации, а также занимается разработкой методов микробиологической диагностики, специфической профилактики и лечения вызываемых ими заболеваний.

История развития микробиологии.

Выделяют пять исторических периода развития и становления микробиологии как науки.

I.Эвристический период связан скорее с логическими и методическими приемами нахождения истины, чем с какими-либо экспериментами и доказательствами.

Гиппократ, Парацельс (VI век до н.э.) высказывали предположение о природе заразных болезней, миазмах, мелких невидимых животных.

В наиболее законченной форме идею сформулировал Джироламо Фракосторо в труде «О контагиях, контагиозных болезнях и лечении» (1546г.), где высказал идею о живом контагии «зародышей болезни», который вызывает болезни. При этом каждая болезнь вызывается своим контагием. Для предохранения болезней им были рекомендованы изоляция больного, карантин, ношение масок, обработка предметов уксусом. Однако это были гипотезы, доказательств которых у них не было.

II.Описательный период (морфологический) связан с созданием микроскопа и открытием микроскопических существ, невидимых глазом человека. Первый микроскоп был создан в 1590 году голландскими учёными Гансом и Захарием Янсенами , но у него было увеличение всего лишь в 32 раза. Голландский натуралист Антонио Левенгук (1632 – 1723гг.) сконструировал микроскоп с увеличением в 160-300 раз, при помощи которого ему удалось обнаружить мельчайших «живых зверьков» («анималькулей», от лат. animalcula , зверушка) в дождевой воде, зубном налёте и других материалах.

В этот же период в 1771 г. русский врач Данило Самойлович (1744 – 1805 гг.) в опыте самозаражения гноем больных чумой доказал роль микроорганизмов в этиологии чумы и возможность предохранения людей от чумы с помощью прививок. Чтобы доказать, что чума вызывается особым возбудителем, он заразил себя отделяемым бубона больного чумой человека и заболел чумой. К счастью, Д. Самойлович остался жив.

Эдвард Дженнер (1749 – 1823 гг.) создал и успешно применил вакцину для профилактики натуральной оспы, взяв материал от доярки, больной коровьей оспой.

III.Физиологический период (Пастеровский) – «золотой век» микробиологии.

Л. Пастер (1822 – 1895 гг.)– основатель французской школы микробиологии, его основные достижения:

Брожение и гниение – микробный процесс;

Самопроизвольное зарождение не возможно;

Болезни вина и пива;

Болезни шелковичных червей;

Вакцина против бешенства, сибирской язвы у животных и куриной холеры;

Предложение мягкого метода стерилизации – пастеризации.

Р. Кох (1843 – 1910 гг.)– основатель школы немецких микробиологов, его достижения:

Выделил палочку сибирской язвы;

Выделил возбудителя туберкулеза и холеры;

Внедрил в практику микробиологии анилиновые красители, иммерсионную систему, плотные питательные среды.

IV. Иммунологический период связан с работами И. И. Мечникова и П. Эрлиха.

И. И. Мечников (1845-1916гг.) – один из основоположников иммунологии, описал явление фагоцитоза (клеточная теория иммунитета).

Пауль Эрлих (1854-1915гг.) сформулировал теорию гуморального иммунитета, объяснив происхождение антител и их взаимодействие с антигенами.

В 1908 г. И. И. Мечникову и П. Эрлиху была присуждена Нобелевская премия за работы в области иммунологии.

Д. И. Ивановский (1864-1920гг.) – первооткрыватель вирусов. Будучи сотрудником кафедры ботаники Петербургского университета в 1892 г. при изучении мозаичной болезни табака пришел он к выводу, что заболевание вызвано фильтрующимся агентом, впоследствии названным вирусом.

1928 г. – А. Флеминг , изучая явления микробного антагонизма, получил нестабильный пенициллин.

А в 1940 г. – Г. Флори и Э. Чейн получили стабильную форму пенициллина.

V. Современный период (молекулярно – генетический) связан с научно-технической революцией в естествознании.

1944 г. – Доказана роль ДНК в передаче наследственной информации. (О. Эвери, К. Мак-Леод, К. Мак-Карти)

1953 г. – Расшифровка структуру ДНК Д. Уотсон и Ф. Крик .

1958 г. – Описание явления иммунологической толерантности (П. Медавар и Гашек)

1959 г. – Смоделировали молекулу иммуноглобулина (Р. Портер и Д. Эдельман) .

В 60-70 гг. появились работы по генетике бактерий, становление генной инженерии.

1982 г. – Открыли ВИЧ(Р. Галло, 1883 г. Л. Монтанье ).

Морфология бактерий.

По форме выделяют следующие основные группы микроорганизмов.

1.Шаровидные или кокки.

2.Палочковидные.

3.Извитые.

4.Ветвящиеся.

I. Кокковидные бактерии (кокки) по характеру взаиморасположения после деления подразделяются на:

1.Микрококки - клетки расположенные в одиночку. Входят в состав нормальной микрофлоры, находятся во внешней среде. Заболеваний у людей не вызывают.

2.Диплококки - это парные клетки, к ним относятся гонококки, менингококки, пневмококки.

3.Стрептококки - размножающиеся клетки сохраняют связь (не расходятся), образуя цепочки. Много патогенных микроорганизмов - возбудители ангин, скарлатины, гнойных воспалительных процессов.

4.Тетракокки - имеют вид тетрад (т.е. по четыре клетки). Медицинского значения не имеют.

5.Сарцины - имеют вид пакетов из 8, 16 и более кокков. Часто обнаруживают в воздухе. Болезнетворных форм нет.

6.Стафилококки - образуют скопления, напоминающие грозди винограда. Вызывают многочисленные болезни, прежде всего гнойно - воспалительные.

II. Палочковидные формы микроорганизмов (палочки):

1.Бактерии - палочки, не образующие спор (кишечная палочка, дизентерийная, туберкулезные, дифтерийные и др.).

2.Бациллы - аэробные спорообразующие микробы. Диаметр споры обычно не превышает размера (“ширины”) клетки (бациллы сибирской язвы).

3.Клостридии - анаэробные спорообразующие микробы. Диаметр споры больше диаметра клетки, в связи с чем клетка напоминает веретено или теннисную ракетку (возбудитель столбняка, ботулизма, газовой гангрены).

Необходимо иметь в виду, что термин “бактерия” часто используют для обозначения всех микробов - прокариот. В более узком (морфологическом) значении бактерии - палочковидные формы прокариот, не имеющих спор.

III. Извитые формы микроорганизмов:

1.Вибрионы - имеют один изгиб, могут быть в форме запятой, короткого завитка (холерный вибрион).

2.Спириллы - имеют 2- 3 завитка (возбудитель Содоку - болезнь укуса крыс).

3.Спирохеты - имеют различное число завитков. Из большого числа спирохет наибольшее медицинское значение имеют представители трех родов - трептонемы, боррелии, лептоспиры.

IV. Ветвящиеся бактерии - палочковидные бактерии, которые могут иметь разветвления в форме латинской буквы «Y», встречающиеся у бифидобактерий . Также могут быть представленными в виде нитевидных разветвленных клеток, способных переплетаться, образуя мицелий, что наблюдается у актиномицет .

Помимо истинных бактерии имеются и другие более или менее отличающиеся от них. Это спирохеты, риккетсии, хламидии, актиномицеты и микоплазмы.

Спирохеты - тонкие длинные извитые (спиралевидной формы), грамотрицательные бактерии. Они подвижны, передвигаются волнообразным сокращением тела. Некоторые спирохеты вызывают заболевания человека (возвратный тиф, сифилис).

У человека хламидии вызывают хламидиозы, проявляющиеся поражением глаз (трахома, конъюнктивит), урогенитального тракта, легких и др.

Актиномицеты (или лучистые грибы) имеют вид небольших или длинных разветвленных тонких нитей. Патогенные формы вызывают актиномикоз.

Микоплазмы - мелкие бактерии (0,15-1 мкм), окруженные только цитоплазматической мембраной и не имеющие клеточной стенки. Имеют разнообразную форму: кокковидную, нитевидную, колбовидную. Микоплазмы вызывают у человека атипичную пневмонию и поражения мочеполового тракта.

Физиология бактерий.

Питание бактерий

Дыхание бактерий.

Путем дыхания (или биологическое окисление) микроорганизмы добывают энергию.

По отношению к молекулярному кислороду бактерии можно разделить на три основные группы:

1) облигатные (обязательные) аэробы могут расти только при наличии кислорода (микобактерии туберкулеза);

2) облигатные анаэробы растут на среде без кислорода, который для них токсичен (клостридии ботулизма, газовой гангрены, столбняка, бактероиды);

3) факультативные анаэробы (аэробы) могут расти как при наличии кислорода, так и без него(кишечная палочка, возбудители брюшного тифа, паратифа).

Микробиология.

1 вопрос:

Микробиология (от греч. micros . малый, bios . жизнь, logos . учение) -.наука, изучающая строение, жизнедеятельность и экологию микроорганизмов мельчайших форм жизни растительного или животного происхождения, не видимых невооруженным глазом.

История развития микробиологии

Микробиология зародилась задолго до нашей эры. В своем развитии она прошла несколько этапов обусловленных основными достижениями и открытиями.

Историю развития микробиологии: эвристический, морфологический, физиологический, иммунологический и молекулярно-генетический этапы.

Эвристический период (IV.III тысячелетие до н.э. .XVI в. н. э.) связан с логическими и методическими приемами нахождения истины. Мыслители того времени (Гиппократ) высказывали предположения о природе заразных болезней, миазмах, мелких невидимых животных.

Д. Фракасторо был одним из основоположников эпидемиологии, т. е. науки о причинах, условиях и механизмах формирования заболеваний и способах их профилактики.

Однако доказательство существования невидимых возбудителей болезней стало возможным после изобретения микроскопа. Приоритет в открытии микроорганизмов принадлежит голландскому натуралисту-любителю Антонио Левенгуку (1б32. 1723). Торговец полотном А. Левенгук увлекался шлифованием стекол и довел это искусство до совершенства, сконструировав микроскоп, позволивший увеличивать рассматриваемые предметы в 300 раз.

Изучая под микроскопом различные объекты (дождевую воду, настои, зубной налет, кровь, испражнения, сперму), А. Левенгук наблюдал мельчайших животных, которых он назвал анималькулюсами. Свои наблюдения А. Левенгук регулярно сообщал в Лондонское королевское общество, а в1695 г. обобщил в книге «Тайны природы, открытые Антонием Левенгуком».

2.морфологический этап. (изобретение микроскопа А.Левенгуком). Самозарождения нет.

Это было сделано выдающимся французским ученым Луи Пастером (1822. 1895), который в опыте показал, что самозарождения не существует. Л. Пастер поместил стерильный бульон в колбу, сообщавшуюся с атмосферным воздухом через изогнутую S-образную трубку. В такой, по существу открытой, колбе бульон при длительном стоянии оставался прозрачным, потому что изогнутость трубки не давала возможности микроорганизмам проникнуть с пылью из воздуха в колбу.

Наконец, в 1892 г. русский ботаник Д.И.Ивановский (1864. 1920) открыл вирусы -- представителей царства vira. Эти живые существа проходили через фильтры, задерживающие бактерии, и поэтому были названы фильтрующимися вирусами. Вначале был открыт вирус, вызывающий заболевание табака, известное под названием «табачная мозаика», затем вирус ящура, желтой лихорадки и многие другие вирусы. Однако увидеть вирусные частицы стало возможным только после изобретения электронного микроскопа, так как в световые микроскопы вирусы не видны. К настоящему времени царство вирусов (vira) насчитывает до 1000 болезнетворных видов вирусов. Только за последнее время открыт ряд новых вирусов, в том числе вирус, вызывающий СПИД.

физиологический период XIX в., особенно его вторую половину, принято называть физиологическим периодом в развитии микробиологии. Этот этап связан с именем Л. Пастера, который стал основоположником медицинской микробиологии, а также иммунологии биотехнологии. Л. Пастер сделал ряд "выдающихся открытий. За короткий период с 1857 по 1885 г. он доказал, что брожение (молочнокислое, спиртовое, уксуснокислое) не является химическим процессом, а его вызывают микроорганизмы; опроверг теорию самозарождения; открыл явление анаэробиоза, т.е. возможность жизни микроорганизмов в отсутствие кислорода; заложил основы дезинфекции, асептики и антисептики; открыл способ предохранения от инфекционных болезней с помощью вакцинации.

Многие открытия Л. Пастера принесли человечеству огромную практическую пользу. Путем прогревания (пастеризации) были побеждены болезни пива и вина, молочнокислых продуктов, вызываемые микроорганизмами; для предупреждения гнойных осложнений ран введена антисептика; на основе принципов Л. Пастера разработаны многие вакцины для борьбы с инфекционными болезнями.

Л. Пастер вывел микробиологию и иммунологию на принципиально новые позиции, показал роль микроорганизмов в жизни людей, экономике, промышленности, инфекционной патологии, заложил принципы, по которым развиваются микробиология й иммунология и в наше время.

Физиологический период в развитии Микробиологии связан также с именем немецкого ученого Роберта Коха, которому принадлежит разработка методов получения чистых культур бактерий, окраски бактерий при микроскопии, микрофотографии. Известна также сформулированная Р. Кохом триада Коха, которой до сих пор пользуются при установлении возбудителя болезни.

Работы Л. Пастера по вакцинации открыли новый этап в развитии микробиологии, по праву получивший название ""иммунологического».

Принцип аттенуации (ослабления) микроорганизмов с помощью пассажей через восприимчивое животное или при выдерживании микроорганизмов в неблагоприятных условиях (температура, высушивание) позволило Л. Пастеру получить вакцины против бешенства, сибирской язвы, куриной холеры; этот принцип до настоящего времени используется при приготовлении вакцин. Следовательно, Л. Пастер является основоположником научной иммунологии.

Таким образом, с 50-х годов в развитии микробиологии и иммунологии начался молекулярно-генетический период, который характеризуется рядом принципиально важных научных достижений и открытий. К ним относятся:

Расшифровка молекулярной структуры и молекулярно-биологической организации многих вирусов и бактерий; открытие простейших форм жизни. «инфекционного белка» приона;

Расшифровка химического строения и химический синтез некоторых антигенов. Например, химический синтез лизоцима [Села"Д., 1971], пептидов вируса СПИДа (Р.В.Петров, В. Т. Иванов и др.);

Расшифровка строения антител-иммуноглобулинов

Разработка метода культур животных и растительных клеток и их выращивания в промышленных масштабах с целью получения вирусных антигенов;

Получение рекомбинантных бактерий и рекомбинантных вирусов. Синтез отдельных генов вирусов и бактерий. Получение рекомбинантных штаммов бактерий и вирусов, сочетающих свойства родительских особей или приобретающих новые свойства;

Создание гибридом путем слияния иммунных В-лимфоцитов. продуцентов антител и раковых клеток с целью получения моноклональных антител

Открытие иммуномодуляторов. иммуноцитокинов (интерлей-кины, интерфероны, миелопептиды и др.) .

Получение вакцин (вакцина гепатита В, малярии, антигенов ВИЧ и других антигенов),

Разработка синтетических вакцин на основе природных или синтетических антигенов и их фрагментов, а также искусственного носителя. адъюванта (помощника) . стимулятора иммунитета;

Изучение врожденных и приобретенных иммунодефицитов, их роли в иммунопатологии и разработка иммунокорригиру-ющей терапии. Открытие вирусов, вызывающих иммунодефициты;

Разработка принципиально новых способов диагностики инфекционных и неинфекционных болезней (иммунофермент-ный, радиоиммунный анализы, иммуноблоттинг, гибридизация нуклеиновых кислот). Создание на основе этих способов тест-систем для индикации, идентификации микроорганизмов, диагностики инфекционных и неинфекционных болезней (опухоли, сердечно-сосудистые, аутоиммунные, эндокринные и др.), а также выявления нарушений при некоторых состояниях (беременность, переливание крови, пересадка органов и т.д.) Перечислены только наиболее крупные достижения молекулярно-генетического периода в развитии микробиологии и иммунологии. За это время был открыт ряд новых вирусов

(возбудители геморрагических лихорадок Ласса, Мачупо; вирус, вызывающий СПИД) и бактерий (возбудитель болезни легионеров); созданы новые вакцинные и другие профилактические препараты (вакцины против кори, полиомиелита, паротита, клещевого энцефалита, вирусного гепатита В, полианатоксины против столбняка, газовой гангрены и ботулизма и др.), новые диагностические препараты.

Микробиология изучает всех представителей микромира (бактерии, грибы, простейшие, вирусы). По своей сути микробиология является биологической фундаментальной наукой. Для изучения микроорганизмов она использует методы других наук, прежде всего физики, биологии, биоорганической химии, молекулярной биологии, генетики, цитологии, иммунологии. Как и всякая наука, микробиология подразделяется на общую и частную. Общая микробиология изучает закономерности строения и жизнедеятельности микроорганизмов на всех уровнях. молекулярном, клеточном, популяционном; генетику и взаимоотношения их с окружающей средой. Предметом изучения частной микробиологии являются отдельные представители микромира в зависимости от проявления и влияния их на окружающую среду, живую природу, в том числе человека. К частным разделам микробиологии относятся: медицинская, ветеринарная, сельскохозяйственная, техническая (раздел биотехнологии), морская, космическая микробиология.

Многочисленные открытия в области микробиологии, изучение взаимоотношений между макро- и микроорганизмами во второй половине XIX в. способствовали началу бурного развития иммунологии.

Водоросли авто- и гетеротрофы.

Водоросли обитают: в океанах, морях, реках, озерах, на почве, скалах, деревьях, в снегу и горячих источниках.

Роль водорослей в природе колоссальная. Они являются первопищей для многих организмов, в первую очередь ракообразных с фильтрационным типом питания. Рачков в свою очередь поедают рыбы. На долю водорослей приходится от 30 до 50% выделяемого растениями кислорода.

Способность водорослей адаптироваться к разнообразным условиям уникальна. Они живут в дождевой воде с минимальным количеством солей, в соленых и сверхсоленых водоемах, на высокогорных льдах и поверхности раскаленных скал. Водоросли обнаруживаются даже в верхних слоях почвы, куда едва проникает солнечный свет. Они первыми заселяют безжизненный субстрат скал и почв, создавая условия для дальнейшего развития плодородия почв.

Благодаря широкому распространению, водоросли играют важную роль в круговороте веществ в природе.

Многие виды водорослей (особенно красные и бурые) с давних пор используются человеком в пищу. Из водорослей получают агар-агар, альгинат натрия, некоторые кислоты, используемые во многих отраслях промышленности. Выброшенные на берег водоросли с давних пор используются в виде кормовых добавок в пищу сельскохозяйственным животным и птице, а после перегнивания – в качестве удобрения для растений.

Водоросли используются для получения из них метана.

Водоросли – это растения, обитающие в воде.

Эти водоросли легко переносят высыхание, промерзание и очень быстро оживают при малейшем увлажнении.

Некоторые водоросли обитают в качестве симбионтов внутри организма некоторых животных (простейших, кораллов, червей, моллюсков и др.).

Тело водорослей – слоевище или таллом – по своему строению значительно проще, чем у мхов, папоротников и других наземных растений, часто отсутствует дифференциация клеток на ткани. Споры – органы размножения водорослей, как правило, лишены твердой оболочки. Клеточная стенка водорослей состоит из целлюлозы, пектиновых веществ, кремнийорганических соединений (у диатомовых водорослей), альгина и фуцина (бурые водоросли). В качестве запасных веществ представлены крахмал, гликоген, полисахариды, липиды.

прокариотические и эукариотические водоросли. У прокариотов клетки не имеют ограниченного мембраной ядра. К ним относятся все бактерии и сине-зеленые водоросли (или же Cyanobacteria – цианобактерии). У эукариотов клетки содержат оформленное ядро.

Прокариотические водоросли (Procaryota):

1. Сине-зеленые (Cyanophyta);

2. Прокариотические (первичные) зеленые водоросли (Prochlorophyta).

Эукариотические водоросли (Eukaryota):

1. Эвгленовые (Euglenophyta);

Динофитовые (Dinophyta);

3. Криптофитовые (Cryptophyta);

4. Рафидофитовые (Raphidophyta);

Золотистые водоросли (Chrysophyta);

6. Диатомовые (Bacillariophyta);

7. Желтозеленые (Xanthophyta);

Красные водоросли (Rhodophyta);

9. Бурые водоросли (Phaeophyta);

10. Зеленые водоросли (Chlorophyta);

11. Харовые водоросли (Charophyta).

Синезеленые и прокариотические зеленые водоросли относят к прокариотам (т.е. к неядерным организмам), так как их клетки лишены оформленного ядра.

У Cyanophyta, в отличие от эукариот, нет оформленного ядра, что сближает их с другими прокариотами, основу клеточных стенок составляет гликопептид муреин, половой процесс или отсутствует, или протекает по типу коньюгации,

Жгутиковые формы имеют признаки, как растений, так и животных, что послужило поводом для объединения их всех в общую систематическую группу «жгутиковых организмов» и включения их в систему животного мира. В отличие от животных-жгутиконосцев, водоросли имеют хлорофилл и хроматофоры. Однако в темноте они могут утрачивать пигменты, становятся бесцветными и существуют за счет поглощения растворенных в воде органических веществ. Некоторые виды одноклеточных водорослей (из Dinophyta) способны, подобно простейшим, захватывать органические частицы.

Вопрос

Относится около 100 000 известных видов

Являются эукариотами, имеют в клетках ядро (одно или несколько), есть одноклеточные и многоклеточные организмы.

являются гетеротрофами, так как не имеют хлорофилла, в их клеточных стенках содержится хитин (как у животных), углеводы запасаются в виде гликогена, они способны образовывать мочевину

Признаки, характерные только для грибов:

основу вегетативного тела гриба составляет грибница, или мицелий она состоит из тонких ветвящихся трубчатых нитей, их называют гифами гифы состоят из многоядерных или одноядерных клеток

плотное переплетение гифов образует плодовое тело, в котором образуются споры

Грибы размножаются:

бесполым способом – участками мицелия и спорами

половым способом – в результате слияния специализированных половых клеток

Питание грибов:

поглощают питательные вещества, всасывая их всей поверхностью тела

Грибы живут недолго, но есть среди них и многолетние.

У шляпочных грибов долго живет мицелий.

Роль в природе: Грибы имеют значение как пищевые продукты или продуценты лекарственных веществ. Они играют большую роль в круговороте веществ в природе. Обладая богатым ферментным аппаратом, грибы активно разлагают попадающие в почву останки животных и растений, способствуя образованию плодородного слоя почвы.

2,2 вопрос.

Обзор строения простейших

одноклеточными организмами, тело которых состоит из цитоплазмы и одного или нескольких ядер. Клетка простейшего - это самостоятельная особь она выполняет функции всего организма. Принято считать, что одноклеточные существа более примитивны, нежели многоклеточные.

Большинство представителей класса имеет микроскопические размеры - 3-150 мкм. Только наиболее крупные представители вида (раковинные корненожки) достигают 2-3 см в диаметре.

Строение тела простейшего типично для эукариотической клетки. Имеются органеллы общего (митохондрии, рибосомы, клеточный центр, ЭПС и др.) и специального назначения (ложноножки, или псевдоподии, жгутики, реснички, пищеварительные и сократительные вакуоли). Органоиды общего значения присущи всем эукариотическим клеткам.

Органоиды пищеварения - пищеварительные вакуоли с пищеварительными ферментами. Питание происходит путем пино- или фагоцитоза. Некоторые простейшие имеют хлоропласты и питаются за счет фотосинтеза.

Пресноводные простейшие имеют органы осморегуляции - сократительные вакуоли.

Большинство простейших имеет одно ядро, но есть представители с несколькими ядрами. Ядра некоторых простейших характеризуются полиплоидностью.

Цитоплазма неоднородна. Она подразделяется на более светлый и гомогенный наружный слой, или эктоплазму, и зернистый внутренний слой, или эндоплазму. Наружные покровы представлены либо цитоплазматической мембраной (у амебы), либо пелликулой (у эвглены). Фораминиферы и солнечники, обитатели моря, имеют минеральную, или органическую, раковину.

Особенности жизнедеятельности простейших

Подавляющее большинство простейших - гетеротрофы.

Дыхание, т. е. газообмен, происходит через всю поверхность клетки.

Раздражимость представлена таксисами (двигательными реакциями). Встречаются фототаксис, хемотаксис и др.

Размножение простейших

Бесполое - митозом ядра и делением клетки надвое (у амебы, эвглены, инфузории), а также путем шизогонии - многократного деления (у споровиков).

Половое - копуляция. Клетка простейшего становится функциональной гаметой; в результате слияния гамет образуется зигота.

Многие простейшие способны существовать в двух формах - трофозоита и цисты.

Для многих представителей типа Protozoa характерно наличие жизненного цикла, состоящего в закономерном чередовании жизненных форм. Как правило, происходит смена поколений с бесполым и половым размножением. Образование цисты не является частью закономерного жизненного цикла.

Роль в природе:

1. очищение водоемов от загрязнений (инфузории).

2. Простейшие служат пищей для малька рыб и другим водным обитателям.

3. осуществляя фотосинтез, уменьшают количество углекислого газа и увеличивают содержание кислорода в воде.

4. По количеству инфузорий и эвглен можно определять степень загрязненности воды. Большое количество эвглен говорит о том, что вода загрязнена органическими веществами. Амеба обыкновенная живет там, где мало органических веществ.

5. Раковины простейших (морские фораминиферы) участвуют в образовании мела и известняка.

6. Вызывание различных заболеваний у человека и животных.

7. Наиболее опасен малярийный плазмодий, вызывающий малярию. Он питается эритроцитами человека, разрушая их.

3 вопрос:

К надцарству прокариот относится три царства:

царство бактерий (эубактерий),

царство архебактерий,

царство цианобактерий (цианей, синезеленых водорослей).

К надцарству эукариот относится три царства:

царство растений,

царство животных

царство грибов.

Главное отличие

У прокариот нет ядра, кольцевая ДНК (кольцевая хромосома) расположена прямо в цитоплазме (этот участок цитоплазмы называется нуклеоид).

У эукариот есть оформленное ядро (наследственная информация [ДНК] отделена от цитоплазмы ядерной оболочкой).

Дополнительные отличия

1) Раз у прокариот нет ядра, то нет и митоза/мейоза. Бактерии размножаются делением надвое.

2) У прокариот из органоидов имеются только рибосомы (мелкие, 70S), а у эукариот кроме рибосом (крупных, 80S) имеется множество других органоидов: митохондрии, эндоплазматическая сеть, клеточный центр, и т.д.

3) Клетка прокариот гораздо меньше клетки эукариот: по диаметру в 10 раз, по объему – в 1000 раз.

Микробиологией называют науку о микроскопических живых существах, размер которых не превышает 1 мм. Такие организмы можно рассмотреть только с помощью увеличительных приборов. Объектами микробиологии являются представители разных групп живого мира: бактерии, археи, простейшие, микроскопические водоросли, низшие грибы. Все они характеризуются малыми размерами и объединяются общим термином «микроорганизмы».

Микроорганизмы представляют собой самую большую группу живых существ на Земле, и ее члены распространены повсеместно.

Место микробиологии в системе биологических наук определяется спецификой ее объектов, которые, с одной стороны, в большинстве своем представляют собой одну клетку, а с другой - являются полноценным организмом. Как наука об определенном классе объектов и их разнообразии микробиология аналогична таким дисциплинам, как ботаника и зоология. В то же время она относится к физиолого-биохимической ветви биологических дисциплин, так как изучает функциональные возможности микроорганизмов, их взаимодействие с окружающей средой и другими организмами. И наконец, микробиология - это наука, исследующая общие фундаментальные законы существования всего живого, явления на стыке одно- и многоклеточности, развивающая представления об эволюции живых организмов.

Значение микроорганизмов в природных процессах и человеческой деятельности

Роль микробиологии определяется значением микроорганизмов в природных процессах и в человеческой деятельности. Именно они обеспечивают протекание глобального круговорота элементов на нашей планете. Такие его стадии, как фиксация молекулярного азота, денитрификация или минерализация сложных органических веществ, были бы невозможны без участия микроорганизмов. На деятельности микроорганизмов основан целый ряд необходимых человеку производств продуктов питания, различных химических веществ, лекарственных препаратов и т.д. Микроорганизмы используются для очистки окружающей среды от различных природных и антропогенных загрязнений. В то же время многие микроорганизмы являются возбудителями заболеваний человека, животных, растений, а также вызывают порчу продуктов питания и различных промышленных материалов. Представители других научных дисциплин часто используют микроорганизмы в качестве инструментов и модельных систем при проведении экспериментов.

История микробиологии

История микробиологии исчисляется примерно с 1661 г, когда голландский торговец сукном Антони ван Левенгук (1632-1723) впервые описал микроскопические существа, наблюдаемые им в микроскоп собственного изготовления. В своих микроскопах Левенгук использовал одну короткофокусную линзу, закрепленную в металлическую оправу. Перед линзой находилась толстая игла, к кончику которой прикреплялся исследуемый объект. Иглу можно было передвигать относительно линзы с помощью двух фокусирующих винтов. Линзу следовало приложить к глазу и через нее рассматривать объект на кончике иглы. Будучи по складу характера любознательным и наблюдательным человеком, Левенгук изучил различные субстраты естественного и искусственного происхождения, рассмотрел под микроскопом огромное количество объектов и сделал очень точные рисунки. Он исследовал микроструктуру растительных и животных клеток, сперматозоиды и эритроциты, строение сосудов растений и животных, особенности развития мелких насекомых. Достигнутое увеличение (50-300 раз) позволило Левенгуку увидеть микроскопические существа, названные им «зверушками», описать их основные группы, а также сделать вывод о том, что они вездесущи. Свои заметки о представителях мира микробов (простейших, плесневых грибах и дрожжах, различных формах бактерий - палочковидных, сферических, извитых), о характере их движения и устойчивых сочетаниях клеток Левенгук сопровождал тщательными зарисовками и в виде писем направлял в Английское Королевское общество, которое имело целью поддерживать обмен информацией среди научной общественности. После смерти Левенгука изучение микроорганизмов долго сдерживалось несовершенством увеличительных приборов. Только к середине XIX века были созданы модели световых микроскопов, позволившие другим исследователям детально описать основные группы микроорганизмов. Этот период истории микробиологии можно условно назвать описательным.

Физиологический этап развития микробиологии начался приблизительно с середины 19-го века и связан он с работами французского химика-кристаллографа Луи Пастера (1822-1895) и немецкого сельского врача Роберта Коха (1843-1910). Эти ученые положили начало экспериментальной микробиологии и существенно обогатили методологический арсенал этой науки.

При исследовании причин прокисания вина Л.Пастер установил, что сбраживание виноградного сока и образование спирта осуществляют дрожжи, а порчу вина (появление посторонних запахов, вкусов и ослизнение напитка) вызывают другие микробы. Для предохранения вина от порчи Пастер предложил способ тепловой обработки (нагревание до 70 о С) сразу после брожения, чтобы уничтожить посторонние бактерии. Такой прием, применяемый и сегодня для предохранения молока, вина и пива, получил название «пастеризация».

Исследуя другие виды брожения, Пастер показал, что каждое брожение имеет главный конечный продукт и вызывается микроорганизмами определенного типа. Эти исследования привели к открытию неизвестного ранее образа жизни - анаэробного (бескислородного) метаболизма , при котором кислород не только не нужен, но и часто вреден для микроорганизмов. В то же время для значительного числа аэробных микроорганизмов кислород является необходимым условием их существования. Изучая на примере дрожжей возможность переключения с одного типа обмена веществ на другой, Л.Пастер показал, что анаэробный метаболизм энергетически менее выгоден. Микроорганизмы, способные к такому переключению, он назвал факультативными анаэробами .

Пастер окончательно опроверг возможность самозарождения живых существ из неживой материи в обычных условиях. К тому времени вопрос о самозарождении животных и растений из неживого материала был уже решен отрицательно, а относительно микроорганизмов спор продолжался. Опыты итальянского ученого Ладзаро Спалланцани и французского исследователя Франсуа Аппера по длительному прогреванию питательных субстратов в герметичных сосудах для предотвращения развития микробов подвергались критике сторонников теории самозарождения: они считали, что именно укупорка сосудов препятствует проникновению внутрь некой «жизненной силы». Пастером был проведен изящный эксперимент, поставивший точку в этой дискуссии. Прогретый питательный бульон был помещен в открытый стеклянный сосуд, горлышко которого было вытянуто трубкой и S-образно изогнуто. Воздух мог беспрепятственно проникать внутрь колбы, а клетки микроорганизмов оседали в нижнем изгибе горлышка и не попадали в бульон. В этом случае бульон оставался стерильным неопределенно долго. Если же колбу наклоняли так, что жидкость заполняла нижний изгиб, а затем бульон возвращали обратно в сосуд, то внутри быстро начинали развиваться микроорганизмы.

Работы по изучению «болезней» вина позволили ученому предположить, что возбудителями инфекционных заболеваний животных и человека также могут быть микроорганизмы. Пастер выделил возбудителей ряда болезней и изучил их свойства. Опыты с патогенными микроорганизмами показали, что при определенных условиях они становились менее агрессивными и не убивали зараженный организм. Пастер сделал вывод о возможности прививать ослабленных возбудителей здоровым и зараженным людям и животным, чтобы стимулировать защитные силы организма в борьбе с инфекцией. Ученый назвал материал для прививок вакциной, а сам процесс - вакцинацией. Пастер разработал способы прививок против ряда опасных заболеваний животных и человека, в том от бешенства.

Роберт Кох, начав с доказательства бактериальной этиологии сибирской язвы, затем выделил возбудителей многих болезней в чистой культуре. В своих экспериментах он использовал мелких подопытных животных, а также наблюдал под микроскопом развитие бактериальных клеток в кусочках тканей зараженных мышей. Кохом были разработаны способы выращивания бактерий вне организма, различные методы окраски препаратов для микроскопии и предложена схема получения чистых культур микроорганизмов на твердых средах в виде отдельных колоний. Эти простые приемы до сих пор используются микробиологами всего мира. Кох окончательно сформулировал и экспериментально подтвердил постулаты, доказывающие микробное происхождение заболевания:

  1. микроорганизм должен присутствовать в материале больного;
  2. выделенный в чистой культуре, он должен вызывать ту же болезнь у экспериментально зараженного животного;
  3. из этого животного возбудитель должен быть опять выделен в чистую культуру, и две эти чистые культуры должны быть одинаковыми.

Эти правила получили в дальнейшем название «триада Коха». При исследовании возбудителя сибирской язвы ученый наблюдал образование клетками особых плотных телец (спор). Кох пришел к выводу, что устойчивость этих бактерий в окружающей среде связана со способностью к спорообразованию. Именно споры в течение длительного времени способны заражать скот и в тех местах, где ранее находились больные животные или устраивались скотомогильники.

В 1909 г. за труды по иммунитету русский физиолог Илья Ильич Мечников (1845-1916) и немецкий врач-биохимик Пауль Эрлих (1854—1915) получили Нобелевскую премию по физиологии и медицине.

И.И.Мечников разработал фагоцитарную теорию иммунитета, рассматривавшую процесс поглощения лейкоцитами животных чужеродных агентов как защитную реакцию макроорганизма. Инфекционное заболевание представлялось в этом случае как противостояние патогенных микроорганизмов и фагоцитов организма-хозяина, а выздоровление означало «победу» фагоцитов. В дальнейшем, работая в бактериологических лабораториях сначала в Одессе, а потом в Париже, И.И.Мечников продолжал изучение фагоцитоза, а также принимал участие в исследовании возбудителей сифилиса, холеры и других инфекционных заболеваний и разработке ряда вакцин. На склоне лет И.И.Мечников заинтересовался проблемами старения человека и обосновал полезность использования в пище больших количеств кисломолочных продуктов, содержащих «живые» закваски. Он пропагандировал использование суспензии молочнокислых микроорганизмов, утверждая, что такие бактерии и образуемые ими молочнокислые продукты способны подавлять гнилостные микроорганизмы, производящие вредные шлаки в кишечнике человека.

П.Эрлих, занимаясь экспериментальной медициной и биохимией лекарственных соединений, сформулировал гуморальную теорию иммунитета, согласно которой макроорганизм для борьбы с инфекционными агентами производит специальные химические вещества - антитела и антитоксины, нейтрализующие микробные клетки и выделяемые ими агрессивные субстанции. П.Эрлих разработал методы лечения ряда инфекционных заболеваний и участвовал в создании препарата для борьбы с сифилисом (сальварсана). Ученый первым описал феномен приобретения патогенными микроорганизмами устойчивости к лекарственным препаратам.

Русский эпидемиолог Николай Федорович Гамалея (1859-1948) изучал пути передачи и распространения таких серьезных инфекций как бешенство, холера, оспа, туберкулез, сибирская язва и некоторые заболевания животных. Им усовершенствован разработанный Л.Пастером способ профилактических прививок и предложена вакцина против холеры человека. Ученый разработал и внедрил комплекс санитарно-гигиенических и противоэпидемических мероприятий по борьбе с чумой, холерой, оспой, сыпным и возвратным тифами и другими инфекциями. Н.Ф.Гамалея открыл вещества, растворяющие бактериальные клетки (бактериолизины), описал явление бактериофагии (взаимодействия вирусов и бактериальной клетки) и внес существенный вклад в изучение микробных токсинов.

Признание огромной роли микроорганизмов в биологически важных круговоротах элементов на Земле связано с именами русского ученого Сергея Николаевича Виноградского (1856-1953) и голландского исследователя Мартинуса Бейеринка (1851-1931). Эти ученые изучали группы микроорганизмов, способных осуществлять химические превращения основных элементов и участвовать в биологически важных круговоротах на Земле. С.Н.Виноградский работал с микроорганизмами, использующими неорганические соединения серы, азота, железа и открыл уникальный образ жизни, свойственный только прокариотам, при котором для получения энергии используется восстановленное неорганическое соединение, а для биосинтезов - углерод углекислого газа. Ни животные, ни растения не могут существовать таким способом.

С.Н.Виноградский и М.Бейеринк независимо друг от друга показали способность некоторых прокариот использовать атмосферный азот в своем обмене веществ (фиксировать молекулярный азот). Ими были выделены в виде чистых культур свободноживущие и симбиотические микробы-азотфиксаторы и отмечена глобальная роль таких микроорганизмов в цикле азота. Только прокариотические микроорганизмы могут переводить газообразный азот в связанные формы, используя его для синтеза компонентов клетки. После отмирания азотфиксаторов соединения азота становятся доступными для других организмов. Таким образом, азотфиксирующие микроорганизмы замыкают биологический круговорот азота на Земле.

На рубеже XIX-XX веков русский физиолог растений и микробиолог Дмитрий Иосифович Ивановский (1864-1920) открыл вирус табачной мозаики, тем самым обнаружив особую группу биологических объектов, не имеющих клеточного строения. При исследовании инфекционной природы мозаичной болезни табака ученый попытался очистить сок растения от возбудителя, пропуская его через бактериальный фильтр. Однако после этой процедуры сок был способен заражать здоровые растения, т.е. возбудитель оказался гораздо меньше всех известных микроорганизмов. В дальнейшем оказалось, что целый ряд известных заболеваний вызывается подобными возбудителями. Их назвали вирусами. Увидеть вирусы удалось только в электронный микроскоп. Вирусы являются особой группой биологических объектов, не имеющих клеточного строения, изучением которых в настоящее время занимается наука вирусология.

В 1929 г. английским бактериологом и иммунологом Александром Флемингом (1881-1955) был открыт первый антибиотик пенициллин. Ученый интересовался вопросами развития инфекционных болезней и действия на них различных химических препаратов (сальварсана, антисептиков). Во время Первой мировой войны в госпиталях раненые сотнями умирали от заражения крови. Повязки с антисептиками лишь немного облегчали состояние больных. Флеминг поставил опыт, создав модель рваной раны из стекла и заполнив ее питательной средой. В качестве «микробного загрязнения» он использовал навоз. Промывая стеклянную «рану» раствором сильного антисептика и затем заполняя ее чистой средой Флеминг показал, что антисептики не убивают микроорганизмы в неровностях «раны» и не останавливают инфекционный процесс. Осуществляя множество посевов на твердые среды в чашках Петри, ученый проверял антимикробный эффект различных выделений человека (слюны, слизи, слезной жидкости) и открыл лизоцим, убивающий некоторые болезнетворные бактерии. Чашки с посевами сохранялись Флемингом длительное время и многократно просматривались. В тех чашках, куда случайно попали споры грибов и выросли колонии плесени, ученый заметил отсутствие роста бактерий вокруг этих колоний. Специально поставленные эксперименты показали, что вещество, выделяемое плесневым грибом из рода Penicillium губительно для бактерий, но не опасно для подопытных животных. Флеминг назвал это вещество пенициллином. Использование пенициллина в качестве лекарства стало возможным только после выделения его из питательного бульона и получения в химически чистом виде (в 1940 г.), что в дальнейшем привело к разработке целого класса лекарственных препаратов, названных антибиотиками. Начались активные поиски новых продуцентов антимикробных веществ и выделение новых антибиотиков. Так, в 1944 г. американский микробиолог Зельман Ваксман (1888-1973) получил с помощью ветвящихся бактерий рода Streptomyces широко применяемый антибиотик стрептомицин.

Ко второй половине XIX века микробиологами был накоплен огромный материал, свидетельствующий о чрезвычайном разнообразии типов микробного обмена веществ. Изучению многообразия жизненных форм и выявлению их общих черт посвящены работы голландского микробиолога и биохимика Алберта Яна Клюйвера (1888-1956) и его учеников. Под его руководством было проведено сравнительное изучение биохимии далеко отстоящих друг от друга систематических и физиологических групп микроорганизмов, а также анализ данных физиологии и генетики. Эти работы позволили делать вывод об однотипности макромолекул, составляющих все живое, и об универсальности биологической «энергетической валюты» - молекул АТФ. Разработка общей схемы метаболических путей в значительной степени базируется на исследованиях фотосинтеза высших растений и бактерий, проведенных учеником А.Я.Клюйвера Корнелиусом ван Нилем (1897-1985). К. ван Ниль изучил обмен веществ различных фотосинтезирующих прокариот и предложил обобщающее суммарное уравнение фотосинтеза: CO 2 +H 2 A+ һν → (CH 2 O) n +A, где H 2 A - либо вода, либо другое окисляемое вещество. Такое уравнение предполагало, что именно вода, а не углекислый газ, разлагается при фотосинтезе с выделением кислорода. К середине XX века выводы А.Я.Клюйвера и его учеников (в частности, К. ван Ниля) легли в основу принципа биохимического единства жизни.

Развитие отечественной микробиологии представлено различными направлениями и деятельностью многих известных ученых. Целый ряд научных учреждений нашей страны носит имена многих из них. Так, Лев Семенович Ценковский (1822-1877) изучил большое число простейших, микроводорослей, низших грибов и сделал вывод об отсутствии четкой границы между одноклеточными животными и растениями. Он также разработал способ прививки против сибирской язвы с применением «живой вакцины Ценковского» и организовал пастеровскую станцию вакцинации в Харькове. Георгий Норбертович Габричевский (1860-1907) предложил способ лечения дифтерии с помощью сыворотки и участвовал в создании производства бактериальных препаратов в России. Ученик С.Н.Виноградского Василий Леонидович Омелянский (1867-1928) исследовал микроорганизмы, участвующие в превращениях соединений углерода, азота, серы и в процессе анаэробного разложения целлюлозы. Его работы расширили представления о деятельности микроорганизмов почвы. В.Л.Омелянский предложил схемы круговоротов биогенных элементов в природе. Георгий Адамович Надсон (1867-1939) сначала занимался микробной геохимической деятельностью и воздействием различных повреждающих факторов на микробные клетки. В дальнейшем его работы были посвящены изучению наследственности и изменчивости микроорганизмов и получению устойчивых искусственных мутантов низших грибов под действием излучений. Одним из основоположников морской микробиологии является Борис Лаврентьевич Исаченко (1871-1948). Им была высказана гипотеза о биогенном происхождении месторождений серы и кальция. Владимир Николаевич Шапошников (1884-1968) является основателем отечественной технической микробиологии. Его работы по физиологии микроорганизмов посвящены изучению различных видов брожения. Им открыто явление двухфазности ряда микробиологических процессов и разработка способов управления ими. Исследования В.Н.Шапошникова стали основой для организации в СССР микробиологических производств органических кислот и растворителей. Работы Зинаиды Виссарионовны Ермольевой (1898-1974) внесли существенный вклад в физиологию и биохимию микроорганизмов, медицинскую микробиологию, а также способствовали становлению микробиологического производства ряда отечественных антибиотиков. Так, она исследовала возбудители холеры и другие холероподобные вибрионы, их взаимодействие с организмом человека и предложила санитарные нормы хлорирования водопроводной воды в качестве средства профилактики этого опасного заболевания. Ею был создан и применен для профилактики препарат холерного бактериофага, а в дальнейшем - и комплексный препарат против холеры, дифтерии и брюшного тифа. Применение лизоцима в медицинской практике основано на работах З.В.Ермольевой по обнаружению новых растительных источников лизоцима, установлению его химической природы, разработке метода выделения и концентрирования. Получение отечественного штамма продуцента пенициллина и организация промышленного производства препарата пенициллина-крустозина в годы Великой Отечественной войны - это неоценимая заслуга З.В.Ермольевой. Эти исследования явились импульсом для поиска и селекции отечественных продуцентов других антибиотиков (стрептомицина, тетрациклина, левомицетина, экмолина). Работы Николая Александровича Красильникова (1896-1973) посвящены изучению мицелиальных прокариотических микроорганизмов - актиномицетов. Подробное исследование свойств этих микроорганизмов позволило Н.А.Красильникову создать определитель актиномицетов. Ученый был одним из первых исследователей явления антагонизма в мире микробов, что позволило ему выделить актиномицетный антибиотик мицетин. Н.А.Красильников изучал также взаимодействие актиномицетов с другими бактериями и высшими растениями. Его работы по почвенной микробиологии посвящены роли микроорганизмов в почвообразовании, распределению их в почвах и влиянию на плодородие. Ученица В.Н.Шапошникова, Елена Николаевна Кондратьева (1925-1995) возглавляла изучение физиологии и биохимии фотосинтезирующих и хемолитотрофных микроорганизмов. Ею подробно проанализированы особенности метаболизма таких прокариот и выявлены общие закономерности фотосинтеза и углеродного обмена. Под руководством Е.Н.Кондратьевой был открыт новый путь автотрофной фиксации СО 2 у зеленых несерных бактерий, проведено выделение и подробное изучение штаммов фототрофных бактерий нового семейства. В ее лаборатории была создана уникальная коллекция бактерий-фототрофов. Е.Н.Кондратьева была инициатором исследований метаболизма микроорганизмов-метилотрофов, использующих в своем метаболизме одноуглеродные соединения.

В XX веке микробиология полностью сложилась как самостоятельная наука. Дальнейшее ее развитие происходило с учетом открытий, сделанных в других областях биологии (биохимии, генетике, молекулярной биологии и т.д.). В настоящее время многие микробиологические исследования проводятся совместно специалистами разных биологических дисциплин. Многочисленные достижения микробиологии конца XX - начала XXI веков будут кратко изложены в соответствующих разделах учебника.

Основные направления в современной микробиологии.

Уже к концу XIX века микробиология в зависимости от выполняемых задач начинает подразделяться на ряд направлений. Так, исследования основных законов существования микроорганизмов и их разнообразия относят к общей микробиологии, а частная микробиология изучает особенности их разных групп. Задача природоведческой микробиологии - выявление способов жизнедеятельности микроорганизмов в естественных местах обитания и их роли в природных процессах. Особенности болезнетворных микроорганизмов, вызывающих заболевания человека и животных, и их взаимодействие с организмом хозяина изучают медицинская и ветеринарная микробиология, а микробные процессы в земледелии и животноводстве исследует сельскохозяйственная микробиология. Почвенная, морская, космическая и т.д. микробиология - это разделы, посвященные свойствам специфических для этих природных сред микроорганизмам и процессам, с ними связанным. И наконец, промышленная (техническая) микробиология как часть биотехнологии изучает свойства микроорганизмов, используемых для различных производств. В то же время от микробиологии отделяются новые научные дисциплины, занимающиеся изучением определенных более узких групп объектов (вирусология, микология, альгология и др.). В конце XX века усиливается интеграция биологии наук и многие исследования происходят на стыке дисциплин, образуя такие направления, как молекулярная микробиология, генная инженерия и др.

В современной микробиологии можно выделить несколько основных направлений. С развитием и совершенствованием методологического арсенала биологии активизировались фундаментальные микробиологические исследования, посвященные выяснению путей метаболизма и способов их регуляции. Бурно развивается систематика микроорганизмов, ставящая цель создать такую классификацию объектов, которая отражала бы место микроорганизмов в системе всего живого, родственные связи и эволюцию живых существ, т.е. осуществить построение филогенетического древа. Изучение роли микроорганизмов в природных процессах и антропогенных системах (экологическая микробиология) крайне актуально в связи с повышенным интересом к современным экологическим проблемам. Значительное внимание привлекают исследования популяционной микробиологии, занимающейся выяснением природы межклеточных контактов и способов взаимодействия клеток в популяции. Не теряют актуальности те направления микробиологии, которые связаны с применением микроорганизмов в человеческой деятельности.

Дальнейшее развитие микробиологии в XXI веке наряду с накоплением фундаментальных знаний призвано помочь решению ряда глобальных проблем человечества. В результате варварского отношения к природе и повсеместного загрязнения окружающей среды антропогенными отходами возник значительный дисбаланс в круговоротах веществ на нашей планете. Только микроорганизмы, обладая широчайшими метаболическими возможностями, высокой пластичностью обмена веществ и значительной устойчивостью к повреждающим факторам, могут преобразовать стойкие и токсичные загрязнения в безвредные для природы соединения, а в ряде случаев и в пригодные для дальнейшего использования человеком продукты. Тем самым понизится выброс так называемых «парниковых газов» и стабилизируется газовый состав атмосферы Земли. Осуществляя защиту окружающей среды от загрязнений, микроорганизмы одновременно будут способствовать постоянству глобального круговорота элементов. Микроорганизмы, развиваясь на отходах промышленности и сельского хозяйства, могут служить альтернативными источниками топлива (биогаза, биоэтанола и других спиртов, биоводорода и т.д.). Это позволит решить энергетические проблемы человечества, связанные с истощением полезных ископаемых (нефти, угля, природного газа, торфа). Восполнение продовольственных ресурсов (особенно белковых) возможно путем введения в рацион питания дешевой микробной биомассы быстрорастущих штаммов, полученной на отходах пищевой промышленности или на очень простых средах. Сохранению здоровья человеческой популяции будут способствовать не только тщательное изучение свойств патогенных микроорганизмов и выработка методов защиты от них, но и переход на «природные лекарства» (пробиотики), повышающие иммунный статус человеческого организма.

Наука о формах, сочетаниях и размерах клеток микроорганизмов, их дифференциации, а также размножении и развитии. - наука о многообразии микроорганизмов и их классификации по степени родства. В настоящее время в основу систематики микроорганизмов положены молекулярно-биологические методы.- наука об обмене веществ (метаболизме) микроорганизмов, включающая способы потребления питательных веществ, их разложение, синтез веществ, а также способы получения микроорганизмами энергии в результате процессов брожения , анаэробного дыхания , аэробного дыхания и фотосинтеза .

  • Экология микроорганизмов - наука, изучающая влияние факторов внешней среды на микроорганизмы, взаимоотношения микроорганизмов с другими микроорганизмами и роль микроорганизмов в экосистемах.
  • Прикладная микробиология и биотехнология микроорганизмов - наука о практическом применении микроорганизмов, производстве биологически активных веществ (антибиотиков, ферментов, аминокислот, низкомолекулярных регуляторных соединений, органических кислот) и биотоплива (биогазы, спирты) с помощью микроорганизмов, условиях образования и способы регуляции образования данных продуктов.
  • Рекомендуемая литература

    Поль де Крюи. Охотники за микробами. Научно-популярное издание.

    Гучев М.В., Минеева Л.А. Микробиология. Учебник для ВУЗов.

    Нетрусов А.И., Котова И.Б. Общая микробиология. Учебник для ВУЗов.

    Нетрусов А.И., Котова И.Б. Микробиология. Учебник для ВУЗов.

    Практикум по микробиологии. Под ред. А.И. Нетрусова. Учебное пособие для ВУЗов.

    Экология микроорганизмов. Под ред. А.И. Нетрусова. Учебное пособие для ВУЗов.

    Заварзин Г.А. Лекции по природоведческой микробиологии. Научное издание.

    Колотилова Н.Н., Заварзин Г.А. Введение в природоведческую микробиологию. Учебное пособие для ВУЗов.

    Кондратьева Е.Н. Автотрофные прокариоты. Учебное пособие для ВУЗов.

    Егоров Н.С. Основы учения об антибиотиках. Учебник для ВУЗов.

    Промышленная микробиология. Под ред. Н.С. Егорова. Учебное пособие для ВУЗов.

    Микробиология зародилась задолго до нашей эры и прошла длительный путь развития, исчисляющийся многими тысячелетиями. Историю развития микробиологии можно разделить на 5 этапов.

    1. Эмпирический (описательный) период -6 5 тыс. л. до н. э. -XVI в. н. э. Человек пользовался плодами деятельности микроорганизмов (виноделие, хлебопечение, сыроделие, выделка кож), не зная об их существовании. В те времена верили, что болезни посылаются злыми духами или с помощью колдовства.

    Подход Гиппократа (460 г. до н. э. 370 г. до н. э.) к данному вопросу был новаторским: он полагал, что болезни людям посылают не боги, а возникают они по разным, вполне естественным, причинам. Он делил последние на два класса: общие (вредные влияния климата, почвы, наследственности) и личные (условия жизни и труда, питания, возраст). Наблюдая за течением болезней, он придавал серьезное значение периодам болезней, особенно лихорадочных, и предполагал, что многие болезни вызываются какими-то посторонними невидимыми причинами, имеющими живую природу («миазмы»). Автор обширного собрания из семи книг «Эпидемии».

    Итальянский врач Дж. Фракасторо (1546) также предполагал живую природу агентов инфекционных заболеваний. Он считал, что каждая болезнь вызывается своим «контагием», для предохранения от болезней рекомендовал изоляцию больного, карантин, ношение масок, обработку предметов уксусом.

    2. Морфологический период -конец XVII середина XIX в.: открытие мира микроорганизмов, описание их внешнего вида, опыты по самозаражению с целью доказать инфекционную природу многих заболеваний.

    Левенгук Антони Ван (1632 1723) - нидерландский натуралист, один из основоположников микроскопии. Торговал полотном в мануфактурной лавке в Амстердаме, в свободное время увлекался шлифованием линз. Изготовленные линзы он вставлял в металлические держатели с прикрепленной к ним иглой для насаживания объекта наблюдения (1675 г. - первый микроскоп Левенгука). Всего за свою жизнь Левенгук изготовил около 250 линз со 150–300-кратным увеличением. При помощи таких «микроскопов» Левенгук впервые наблюдал и зарисовал бактерии (1683), простейших (1675), отдельные растительные и животные клетки. В 1680 г. стал членом Королевского общества, в 1695 г. написал труд «Тайны природы, открытые А. Левенгуком». Несовершенство приборов и методов изучения микромира не способствовало быстрому накоплению научных знаний о микроорганизмах.

    Прямые доказательства роли микроорганизмов в возникновении инфекционных заболеваний были найдены в опытах по самозаражению материалами или культурами соответствующих возбудителей, взятыми от больного чумой (Д. Самойлович, В. Смирнов), холерой (М. Петенкофер, И. Мечников, Д. Заболотный, И. Савченко, Н. Гамалея), сыпным тифом (Г. Минх, О. Мочутковский), полиомиелитом (М. Чумаков), гепатитом А (М. Балоян).

    3. Физиологический (пастеровский) период -конец XVIII -начало ХХ в. Начало научной микробиологии: открыто большинство возбудителей инфекционных заболеваний, вирусы, разработана микробная концепция болезней, изучена жизнедеятельность микробной клетки.

    Английский врач Эдвард Дженнер (1749 1823) 14 мая 1796 г. предложил метод вакцинации. В эксперименте он доказал, что прививки людям возбудителя коровьей оспы из содержимого пустул на вымени больных коров предохраняют от заражения натуральной оспой. Результаты исследования он обобщил в статье «Исследование причин и действий коровьей оспы» (1798). С эмпирического открытия Дженнером вакцины против оспы, задолго до открытия самих вирусов, началась борьба с вирусными инфекциями.

    Французский ученый Луи Пастер (1822 1895) - член Парижской академии наук, Французской медицинской академии, основоположник современной микробиологии и иммунологии, биотехнологии. Опроверг теорию самозарождения микроорганизмов (1860). Доказал, что брожение не является химическим процессом, а его вызывают микроорганизмы (1861). Изобрел метод пастеризации, благодаря чему были побеждены болезни вина и пива, порча молочнокислых продуктов. Открыл возбудителей болезней шелковичных червей, вина и пива. Доказал формирование искусственного иммунитета (1870), открыл патогенные микроорганизмы (стафилококк, пневмококк, клостридии). Разработал принцип аттенуации, создал живые вакцины против куриной холеры (1879), сибирской язвы (1881), бешенства (1885). Открыл явление анаэробиоза. Ввел методы антисептики, стерилизации сухим жаром. В 1883 г. создал первый научно-исследовательский институт микробиологии - Институт Пастера.

    Немецкий микробиолог Роберт Кох (1843 1910) - один из основоположников современной бактериологии и эпидемиологии, иностранный член-корреспондент Петербургской АН (1884). Ему принадлежат труды по выявлению возбудителей инфекционных болезней и разработке методов борьбы с ними. Кром еэтого, ученый Сформулировал критерии этиологической связи инфекционного заболевания с микроорганизмом (триада Генле-Коха: выделить микроорганизм от больного, получить чистую культуру, заразить ею лабораторное животное и наблюдать у него развитие схожей клинической картины). Впервые выделил чистую культуру возбудителя сибирской язвы, доказал ее способность к спорообразованию, открыл холерный вибрион (запятая Коха) и туберкулезную палочку (палочка Коха). Предложил способы дезинфекции и стерилизации текучим паром. Ввел в практику метод выделения чистых культур на твердых питательных средах (агар-агаре, желатине, свернутой сыворотке), способы окраски бактерий анилиновыми красителями, иммерсионный объектив, способ микрофотографии. Лауреат Нобелевской премии 1905 г.

    Дмитрий Иосифович Ивановский (1864 1920). 12 февраля 1892 г. на заседании Российской академии наук он сообщил, что возбудителем мозаичной болезни табака является фильтрующийся вирус. Эту дату можно считать днем рождения вирусологии, а Д. И. Ивановского - ее основоположником. Вирусы мозаичной болезни табака удалось впервые увидеть только в 1939 г. в электронный микроскоп.

    3. Иммунологический -начало - середина ХХ в.

    Илья Ильич Мечников (1845 1916) - российский биолог и патолог, один из основоположников сравнительной патологии, эволюционной эмбриологии, иммунологии (автор клеточной теории иммунитета), создатель научной школы, член-корреспондент (1883), почетный член (1902) Петербургской АН. С 1888 г. работал в Пастеровском институте в Париже. Совместно с Н. Ф. Гамалеей основал первую в России бактериологическую станцию (1886). Открыл явление фагоцитоза (1882), изложил фагоцитарную теорию иммунитета в трудах «Невосприимчивость в инфекционных болезнях» (1901). Ему принадлежит цикл работ, посвященных микробиологии и эпидемиологии холеры, чумы, брюшного тифа, туберкулеза; совместно с Э. Ру впервые экспериментально вызвал сифилис у обезьян (1903). Создал теорию происхождения многоклеточных организмов. Разработал учение о микробном антагонизме. Много внимания в своих трудах уделял проблеме старения. Урна с прахом Мечникова, согласно его воле, хранится в библиотеке Пастеровского института.

    Немецкий врач и бактериолог Пауль Эрлих (1854–1915) - почетный член Немецкого химического общества, автор гуморальной теории иммунитета. Открыл антитоксические антитела, разработал метод определения активности антитоксических сывороток. В 1896 г. основал и возглавил Институт по изучению и контролю сывороток. Открыл тучные клетки, разработал способ окрашивания туберкулезных бацилл. Является основоположником химиотерапии инфекционных заболеваний. Проводил эксперименты по лечению сифилиса органическими соединениями мышьяка, индукции злокачественных опухолей у животных.

    В 1908 г. И. Мечникову и П. Эрлиху присуждена Нобелевская премия. В последующей многолетней и плодотворной дискуссии между сторонниками фагоцитарной и гуморальной теорий были раскрыты многие механизмы иммунитета.

    Следующим важным этапом в развитии микробиологии стало открытие антибиотиков. В 1929 г. А. Флеминг открыл пенициллин и началась эра антибиотикотерапии, приведшая к революционному прогрессу медицины. В дальнейшем выяснилось, что бактерии приспосабливаются к антибиотикам, а изучение механизмов лекарственной устойчивости привело к открытию плазмид.

    Г. Домагк обосновал антибактериальное действие сульфаниламидных препаратов и ввел их в лечебную практику (1932).

    Борис Яковлевич Эльберт (1890 1963) - основатель первой в Беларуси кафедры микробиологии и гигиены МГМИ (1923), профессор и заведующий кафедрой, директор Белорусского государственного санитарно-бактериологического института, лауреат Государственной премии. Время деятельности - 20–е – 60–е гг. ХХ в. Организовал производство лечебно-диагностических сывороток, питательных сред. Ученому принадлежат работы по клебсиеллам, микобактериям, лептоспирам, возбудителям тифов и натуральной оспы. Исследовал туляремию и противотуляремийный иммунитет, в соавторстве с Гайским разработал вакцину против туляремии.

    Кафедрой микробиологии, вирусологии, иммунологии БГМУ заведовали: в 1962–1988 г.г.- доктор медицинских наук, профессор Алексей Петрович Красильников, в 1988–2005 г.г. - доктор медицинских наук, профессорЛеонид Петрович Титов, с 2005 г.- кандидат медицинских наук, доцент Татьяна Александровна Канашкова.

    5. Молекулярно-генетический (современный) - с середины ХХ в.: широкое использованиемолекулярных методов исследования. Этому способствовали важнейшие открытия в области молекулярной биологии и генетики.

    В опытах на бактериях была доказана роль ДНК в передаче наследственных признаков. Выяснение принципов кодирования генетической информации в ДНК бактерий и установление универсальности генетического кода позволило лучше понимать молекулярно-генетические закономерности, свойственные высоко организованным организмам.

    Расшифровка генома кишечной палочки сделала возможным конструирование и пересадку генов. Генная инженерия создала новое направление - биотехнологию, с помощью которой получены рекомбинантные микроорганизмы, новые вакцины и диагностические препараты.

    Расшифрована молекулярно-генетическая организация многих вирусов и механизмы их взаимодействия с клетками, механизмы вирусного канцерогенеза. Разработан метод культур клеток. Открыт провирус, вироиды и прионы.

    В современном понимании иммунология - наука, изучающая механизмы защиты организма от всего генетически чужеродного, поддержание структурной и функциональной целостности организма. Иммунология включает ряд специализированных направлений: иммуноморфологию, иммуногенетику, иммунологию онтогенеза, трансплантационную иммунологию, иммунопатологию, иммуногематологию, онкоиммунологию, вакцинологию и прикладную иммунодиагностику. Открыты новые антигены (опухолевые, ГКГС). Расшифровано строение антител, разработана клонально-селекционная теория иммунитета. Созданы гибридомы и получены моноклональные антитела. Изучены многие виды иммунодефицитов, открыты иммуномодуляторы.

    Разработаны новые способы диагностики инфекционных и неинфекционных заболеваний (ИФА, РИА, иммуноблоттинг, гибридизация нуклеиновых кислот, ПЦР).

    Появляются новые данные об открытии инфекционных агентов - возбудителей «соматических» заболеваний (язвенная болезнь желудка, гастрит, инфаркт миокарда, отдельные формы бронхиальной астмы, шизофрения и др.).

    Появилось понятие о новых и возвращающихся инфекциях. Пример реставрации старых патогенов - мультирезистентные микобактерии туберкулеза. Среди новых патогенов - вирусы геморрагических лихорадок, ВИЧ, легионеллы, бартонеллы, эрлихии, хеликобактер, хламидии.

    Сегодня микробиология, вирусология и иммунология - одно из ведущих направлений биологии и медицины, интенсивно развивающееся и расширяющее границы человеческих знаний.