Деление квадратных корней с разными степенями. Квадратный корень




Довольно часто при решении задач мы сталкиваемся с большими числами, из которых надо извлечь квадратный корень . Многие ученики решают, что это ошибка, и начинают перерешивать весь пример. Ни в коем случае нельзя так поступать! На то есть две причины:

  1. Корни из больших чисел действительно встречаются в задачах. Особенно в текстовых;
  2. Существует алгоритм, с помощью которого эти корни считаются почти устно.

Этот алгоритм мы сегодня и рассмотрим. Возможно, какие-то вещи покажутся вам непонятными. Но если вы внимательно отнесетесь к этому уроку, то получите мощнейшее оружие против квадратных корней .

Итак, алгоритм:

  1. Ограничить искомый корень сверху и снизу числами, кратными 10. Таким образом, мы сократим диапазон поиска до 10 чисел;
  2. Из этих 10 чисел отсеять те, которые точно не могут быть корнями. В результате останутся 1—2 числа;
  3. Возвести эти 1—2 числа в квадрат. То из них, квадрат которого равен исходному числу, и будет корнем.

Прежде чем применять этот алгоритм работает на практике, давайте посмотрим на каждый отдельный шаг.

Ограничение корней

В первую очередь надо выяснить, между какими числами расположен наш корень. Очень желательно, чтобы числа были кратны десяти:

10 2 = 100;
20 2 = 400;
30 2 = 900;
40 2 = 1600;
...
90 2 = 8100;
100 2 = 10 000.

Получим ряд чисел:

100; 400; 900; 1600; 2500; 3600; 4900; 6400; 8100; 10 000.

Что нам дают эти числа? Все просто: мы получаем границы. Возьмем, например, число 1296. Оно лежит между 900 и 1600. Следовательно, его корень не может быть меньше 30 и больше 40:

[Подпись к рисунку]

То же самое — с любым другим числом, из которого можно найти квадратный корень. Например, 3364:

[Подпись к рисунку]

Таким образом, вместо непонятного числа мы получаем вполне конкретный диапазон, в котором лежит исходный корень. Чтобы еще больше сузить область поиска, переходим ко второму шагу.

Отсев заведомо лишних чисел

Итак, у нас есть 10 чисел — кандидатов на корень. Мы получили их очень быстро, без сложных размышлений и умножений в столбик. Пора двигаться дальше.

Не поверите, но сейчас мы сократим количество чисел-кандидатов до двух — и снова без каких-либо сложных вычислений! Достаточно знать специальное правило. Вот оно:

Последняя цифра квадрата зависит только от последней цифры исходного числа .

Другими словами, достаточно взглянуть на последнюю цифру квадрата — и мы сразу поймем, на что заканчивается исходное число.

Существует всего 10 цифр, которые могут стоять на последнем месте. Попробуем выяснить, во что они превращаются при возведении в квадрат. Взгляните на таблицу:

1 2 3 4 5 6 7 8 9 0
1 4 9 6 5 6 9 4 1 0

Эта таблица — еще один шаг на пути к вычислению корня. Как видите, цифры во второй строке оказались симметричными относительно пятерки. Например:

2 2 = 4;
8 2 = 64 → 4.

Как видите, последняя цифра в обоих случаях одинакова. А это значит, что, например, корень из 3364 обязательно заканчивается на 2 или на 8. С другой стороны, мы помним ограничение из предыдущего пункта. Получаем:

[Подпись к рисунку]

Красные квадраты показывают, что мы пока не знаем этой цифры. Но ведь корень лежит в пределах от 50 до 60, на котором есть только два числа, оканчивающихся на 2 и 8:

[Подпись к рисунку]

Вот и все! Из всех возможных корней мы оставили всего два варианта! И это в самом тяжелом случае, ведь последняя цифра может быть 5 или 0. И тогда останется единственный кандидат в корни!

Финальные вычисления

Итак, у нас осталось 2 числа-кандидата. Как узнать, какое из них является корнем? Ответ очевиден: возвести оба числа в квадрат. То, которое в квадрате даст исходное число, и будет корнем.

Например, для числа 3364 мы нашли два числа-кандидата: 52 и 58. Возведем их в квадрат:

52 2 = (50 +2) 2 = 2500 + 2 · 50 · 2 + 4 = 2704;
58 2 = (60 − 2) 2 = 3600 − 2 · 60 · 2 + 4 = 3364.

Вот и все! Получилось, что корень равен 58! При этом, чтобы упростить вычисления, я воспользовался формулой квадратов суммы и разности. Благодаря чему даже не пришлось умножать числа в столбик! Это еще один уровень оптимизации вычислений, но, разумеется, совершенно не обязательный:)

Примеры вычисления корней

Теория — это, конечно, хорошо. Но давайте проверим ее на практике.

[Подпись к рисунку]

Для начала выясним, между какими числами лежит число 576:

400 < 576 < 900
20 2 < 576 < 30 2

Теперь смотрим на последнюю цифру. Она равна 6. Когда это происходит? Только если корень заканчивается на 4 или 6. Получаем два числа:

Осталось возвести каждое число в квадрат и сравнить с исходным:

24 2 = (20 + 4) 2 = 576

Отлично! Первый же квадрат оказался равен исходному числу. Значит, это и есть корень.

Задача. Вычислите квадратный корень:

[Подпись к рисунку]

900 < 1369 < 1600;
30 2 < 1369 < 40 2;

Смотрим на последнюю цифру:

1369 → 9;
33; 37.

Возводим в квадрат:

33 2 = (30 + 3) 2 = 900 + 2 · 30 · 3 + 9 = 1089 ≠ 1369;
37 2 = (40 − 3) 2 = 1600 − 2 · 40 · 3 + 9 = 1369.

Вот и ответ: 37.

Задача. Вычислите квадратный корень:

[Подпись к рисунку]

Ограничиваем число:

2500 < 2704 < 3600;
50 2 < 2704 < 60 2;

Смотрим на последнюю цифру:

2704 → 4;
52; 58.

Возводим в квадрат:

52 2 = (50 + 2) 2 = 2500 + 2 · 50 · 2 + 4 = 2704;

Получили ответ: 52. Второе число возводить в квадрат уже не потребуется.

Задача. Вычислите квадратный корень:

[Подпись к рисунку]

Ограничиваем число:

3600 < 4225 < 4900;
60 2 < 4225 < 70 2;

Смотрим на последнюю цифру:

4225 → 5;
65.

Как видим, после второго шага остался лишь один вариант: 65. Это и есть искомый корень. Но давайте все-таки возведем его в квадрат и проверим:

65 2 = (60 + 5) 2 = 3600 + 2 · 60 · 5 + 25 = 4225;

Все правильно. Записываем ответ.

Заключение

Увы, не лучше. Давайте разберемся в причинах. Их две:

  • На любом нормальном экзамене по математике, будь то ГИА или ЕГЭ, пользоваться калькуляторами запрещено. И за пронесенный в класс калькулятор могут запросто выгнать с экзамена.
  • Не уподобляйтесь тупым американцам. Которые не то что корни — они два простых числа сложить не могут. А при виде дробей у них вообще начинается истерика.

В начале урока мы повторим основные свойства квадратных корней, а затем рассмотрим несколько сложных примеров на упрощение выражений, содержащих квадратные корни.

Тема: Функция . Свойства квадратного корня

Урок: Преобразование и упрощение более сложных выражений с корнями

1. Повторение свойств квадратных корней

Вкратце повторим теорию и напомним основные свойства квадратных корней.

Свойства квадратных корней:

1. , следовательно, ;

3. ;

4. .

2. Примеры на упрощение выражений с корнями

Перейдем к примерам использования этих свойств.

Пример 1. Упростить выражение .

Решение. Для упрощения число 120 необходимо разложить на простые множители:

Квадрат суммы раскроем по соответствующей формуле:

Пример 2. Упростить выражение .

Решение. Учтем, что данное выражение имеет смысл не при всех возможных значениях переменной, т. к. в данном выражении присутствуют квадратные корни и дроби, что приводит к «сужению» области допустимых значений. ОДЗ: ().

Приведем выражение в скобках к общему знаменателю и распишем числитель последней дроби как разность квадратов:

При.

Ответ. при.

Пример 3. Упростить выражение .

Решение. Видно, что вторая скобка числителя имеет неудобный вид и нуждается в упрощении, попробуем разложить ее на множители с помощью метода группировки.

Для возможности выносить общий множитель мы упростили корни путем их разложения на множители. Подставим полученное выражение в исходную дробь:

После сокращения дроби применяем формулу разности квадратов.

3. Пример на избавление от иррациональности

Пример 4. Освободиться от иррациональности (корней) в знаменателе: а) ; б) .

Решение. а) Для того чтобы избавиться от иррациональности в знаменателе, применяется стандартный метод домножения и числителя и знаменателя дроби на сопряженный к знаменателю множитель (такое же выражение, но с обратным знаком). Это делается для дополнения знаменателя дроби до разности квадратов, что позволяет избавиться от корней в знаменателе. Выполним этот прием в нашем случае:

б) выполним аналогичные действия:

Ответ.; .

4. Пример на доказательство и на выделение полного квадрата в сложном радикале

Пример 5. Докажите равенство .

Доказательство. Воспользуемся определением квадратного корня, из которого следует, что квадрат правого выражения должен быть равен подкоренному выражению:

. Раскроем скобки по формуле квадрата суммы:

, получили верное равенство.

Доказано.

Пример 6. Упростить выражение .

Решение. Указанное выражение принято называть сложным радикалом (корень под корнем). В данном примере необходимо догадаться выделить полный квадрат из подкоренного выражения. Для этого заметим, что из двух слагаемых является претендентом на роль удвоенного произведения в формуле квадрата разности (разности, т. к. присутствует минус). Распишем его в виде такого произведения: , тогда на роль одного из слагаемых полного квадрата претендует , а на роль второго - 1.

Подставим это выражение под корень.

Ученики всегда спрашивают: «Почему нельзя пользоваться калькулятором на экзамене по математике? Как извлечь корень квадратный из числа без калькулятора?» Попробуем ответить на этот вопрос.

Как же извлечь корень квадратный из числа без помощи калькулятора?

Действие извлечения корня квадратного обратно действию возведения в квадрат.

√81= 9 9 2 =81

Если из положительного числа извлечь корень квадратный и результат возвести в квадрат, получим то же число.

Из небольших чисел, являющихся точными квадратами натуральных чисел, например 1, 4, 9, 16, 25, …,100 квадратные корни можно извлечь устно. Обычно в школе учат таблицу квадратов натуральных чисел до двадцати. Зная эту таблицу легко извлечь корни квадратные из чисел 121,144, 169, 196, 225, 256, 289, 324, 361, 400. Из чисел больших 400 можно извлекать методом подбора используя, некоторые подсказки. Давайте попробуем на примере рассмотреть этот метод.

Пример: Извлечь корень из числа 676 .

Замечаем, что 20 2 = 400, а 30 2 = 900, значит 20 < √676 < 900.

Точные квадраты натуральных чисел оканчиваются цифрами 0; 1; 4; 5; 6; 9.
Цифру 6 дают 4 2 и 6 2 .
Значит, если из 676 извлекается корень, то это либо 24, либо 26.

Осталось проверить: 24 2 = 576, 26 2 = 676.

Ответ: √676 = 26 .

Еще пример: √6889 .

Так как 80 2 = 6400, а 90 2 = 8100, то 80 < √6889 < 90.
Цифру 9 дают 3 2 и 7 2 , то √6889 равен либо 83, либо 87.

Проверяем: 83 2 = 6889.

Ответ: √6889 = 83 .

Если затрудняетесь решать методом подбора, то можно подкоренное выражение разложить на множители.

Например, найти √893025 .

Разложим число 893025 на множители, вспомните, вы делали это в шестом классе.

Получаем: √893025 = √3 6 ∙5 2 ∙7 2 = 3 3 ∙5 ∙7 = 945.

Еще пример: √20736 . Разложим число 20736 на множители:

Получаем √20736 = √2 8 ∙3 4 = 2 4 ∙3 2 = 144.

Конечно, разложение на множители требует знания признаков делимости и навыков разложения на множители.

И, наконец, есть же правило извлечение корней квадратных . Давайте познакомимся с этим правилом на примерах.

Вычислите √279841 .

Чтобы извлечь корень из многоцифрового целого числа, разбиваем его справа налево на грани, содержащие по 2 цифры (в левой крайней грани может оказаться и одна цифра). Записываем так 27’98’41

Чтобы получить первую цифру корня (5), извлекаем квадратный корень из наибольшего точного квадрата, содержащегося в первой слева грани (27).
Потом вычитают из первой грани квадрат первой цифры корня (25) и к разности приписывают (сносят) следующую грань (98).
Слева от полученного числа 298 пишут удвоенную цифру корня (10), делят на нее число всех десятков раннее полученного числа (29/2 ≈ 2), испытывают частное (102 ∙2 = 204 должно быть не больше 298) и записывают (2) после первой цифры корня.
Потом вычитают от 298 полученное частное 204 и к разности (94) приписывают (сносят) следующую грань (41).
Слева от полученного числа 9441 пишут удвоенное произведение цифр корня (52 ∙2 = 104), делят на это произведение число всех десятков числа 9441 (944/104 ≈ 9), испытывают частное (1049 ∙9 = 9441) должно быть 9441 и записывают его (9) после второй цифры корня.

Получили ответ √279841 = 529.

Аналогично извлекают корни из десятичных дробей . Только подкоренное число надо разбивать на грани так, чтобы запятая была между гранями.

Пример . Найдите значение √0,00956484.

Только надо помнить, что если десятичная дробь имеет нечетное число десятичных знаков, из нее точно квадратный корень не извлекается .

Итак, теперь вы познакомились с тремя способами извлечения корня. Выбирайте тот, который вам больше подходит и практикуйтесь. Чтобы научиться решать задачи, их надо решать. А если у Вас возникнут вопросы, записывайтесь на мои уроки .

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Иррациональные выражения и их преобразования

В прошлый раз мы вспомнили (или узнали – кому как), что же такое , научились извлекать такие корни, разобрали по винтикам основные свойства корней и решали несложные примеры с корнями.

Этот урок будет продолжением предыдущего и будет посвящён преобразованиям самых разных выражений, содержащих всевозможные корни. Такие выражения называются иррациональными . Здесь появятся и выражения с буквами, и дополнительные условия, и избавление от иррациональности в дробях, и некоторые продвинутые приёмы в работе с корнями. Те приёмы, которые будут рассматриваться в данном уроке, станут хорошей базой для решения задач ЕГЭ (и не только) практически любого уровня сложности. Итак, давайте приступим.

Прежде всего я продублирую здесь основные формулы и свойства корней. Чтобы не скакать из темы в тему. Вот они:

при

Формулы эти надо обязательно знать и уметь применять. Причём в обе стороны – как слева направо, так и справа налево. Именно на них и основывается решение большинства заданий с корнями любой степени сложности. Начнём пока с самого простого – с прямого применения формул или их комбинаций.

Простое применение формул

В этой части будут рассматриваться простые и безобидные примеры – без букв, дополнительных условий и прочих хитростей. Однако даже в них, как правило, имеются варианты. И чем навороченнее пример, тем больше таких вариантов. И у неопытного ученика возникает главная проблема – с чего начинать? Ответ здесь простой – не знаешь, что нужно - делай что можно . Лишь бы ваши действия шли в мире и согласии с правилами математики и не противоречили им.) Например, такое задание:

Вычислить:

Даже в таком простеньком примере возможны несколько путей к ответу.

Первый – просто перемножить корни по первому свойству и извлечь корень из результата:

Второй вариант такой: не трогаем, работаем с . Выносим множитель из-под знака корня, а дальше - по первому свойству. Вот так:

Решать можно как больше нравится. В любом из вариантов ответ получается один – восьмёрка. Мне, например, проще перемножить 4 и 128 и получить 512, а из этого числа отлично извлекается кубический корень. Если кто-то не помнит, что 512 – это 8 в кубе, то не беда: можно записать 512 как 2 9 (первые 10 степеней двойки, я надеюсь, помните?) и по формуле корня из степени:

Другой пример.

Вычислить: .

Если работать по первому свойству (всё загнать под один корень), то получится здоровенное число, из которого корень потом извлекать – тоже не сахар. Да и не факт, что он извлечётся ровно.) Поэтому здесь полезно в числе вынести множители из-под корня. Причём вынести по максимуму:

И теперь всё наладилось:

Осталось восьмёрку и двойку записать под одним корнем (по первому свойству) и – готово дело. :)

Добавим теперь немного дробей.

Вычислить:

Пример совсем примитивный, однако и в нём имеются варианты. Можно с помощью вынесения множителя преобразовать числитель и сократить со знаменателем:

А можно сразу воспользоваться формулой деления корней:

Как видим, и так, и сяк – всяко правильно.) Если не споткнуться на полпути и не ошибиться. Хотя где тут ошибаться-то…

Разберём теперь самый последний пример из домашнего задания прошлого урока:

Упростить:

Совершенно немыслимый набор корней, да ещё и вложенных. Как быть? Главное – не бояться! Здесь мы первым делом замечаем под корнями числа 2, 4 и 32 – степени двойки. Первое что нужно сделать – привести все числа к двойкам: всё-таки чем больше одинаковых чисел в примере и меньше разных, тем проще.) Начнём отдельно с первого множителя:

Число можно упростить, сократив двойку под корнем с четвёркой в показателе корня:

Теперь, согласно корню из произведения:

.

В числе выносим двойку за знак корня:

А с выражением расправляемся по формуле корня из корня:

Значит, первый множитель запишется вот так:

Вложенные корни исчезли, числа стали поменьше, что уже радует. Вот только корни разные, но пока так и оставим. Надо будет – преобразуем к одинаковым. Берёмся за второй множитель.)

Второй множитель преобразовываем аналогично, по формуле корня из произведения и корня из корня. Где надо – сокращаем показатели по пятой формуле:

Вставляем всё в исходный пример и получаем:

Получили произведение целой кучи совершенно разных корней. Неплохо было бы привести их все к одному показателю, а там – видно будет. Что ж, это вполне возможно. Наибольший из показателей корней равен 12, а все остальные – 2, 3, 4, 6 – делители числа 12. Поэтому будем приводить все корни по пятому свойству к одному показателю – к 12:

Считаем и получаем:

Красивого числа не получили, ну и ладно. Нас просили упростить выражение, а не посчитать . Упростили? Конечно! А вид ответа (целое число или нет) здесь уже не играет никакой роли.

Немного сложения / вычитания и формул сокращённого умножения

К сожалению, общих формул для сложения и вычитания корней в математике нету. Однако, в заданиях сплошь и рядом встречаются эти действия с корнями. Здесь необходимо понимать, что любые корни – это точно такие же математические значки, как и буквы в алгебре.) И к корням применимы те же самые приёмы и правила, что и к буквам – раскрытие скобок, приведение подобных, формулы сокращённого умножения и т.п.

Например, каждому ясно, что . Точно так же одинаковые корни можно совершенно спокойно между собой складывать/вычитать:

Если корни разные, то ищем способ сделать их одинаковыми – внесением/вынесением множителя или же по пятому свойству. Если ну никак не упрощается, то, возможно, преобразования более хитрые.

Смотрим первый пример.

Найти значение выражения: .

Все три корня хоть и кубические, но из разных чисел. Чисто не извлекаются и между собой складываются/вычитаются. Стало быть, применение общих формул здесь не катит. Как быть? А вынесем-ка множители в каждом корне. Хуже в любом случае не будет.) Тем более что других вариантов, собственно, и нету:

Стало быть, .

Вот и всё решение. Здесь мы от разных корней перешли к одинаковым с помощью вынесения множителя из-под корня . А затем просто привели подобные.) Решаем дальше.

Найти значение выражения :

С корнем из семнадцати точно ничего не поделаешь. Работаем по первому свойству – делаем из произведения двух корней один корень:

А теперь присмотримся повнимательнее. Что у нас под большим кубическим корнем? Разность ква.. Ну, конечно! Разность квадратов:

Теперь осталось только извлечь корень: .

Вычислить:

Здесь придётся проявить математическую смекалку.) Мыслим примерно следующим образом: «Так, в примере произведение корней. Под одним корнем разность, а под другим – сумма. Очень похоже на формулу разности квадратов. Но… Корни – разные! Первый квадратный, а второй – четвёртой степени… Хорошо бы сделать их одинаковыми. По пятому свойству можно легко из квадратного корня сделать корень четвёртой степени. Для этого достаточно подкоренное выражение возвести в квадрат.»

Если вы мыслили примерно так же, то вы – на полпути к успеху. Совершенно верно! Превратим первый множитель в корень четвёртой степени. Вот так:

Теперь, ничего не поделать, но придётся вспомнить формулу квадрата разности. Только в применении к корням. Ну и что? Чем корни хуже других чисел или выражений?! Возводим:

«Хм, ну возвели и что? Хрен редьки не слаще. Стоп! А если вынести четвёрку под корнем? Тогда выплывет то же самое выражение, что и под вторым корнем, только с минусом, а ведь именно этого мы и добиваемся!»

Верно! Выносим четвёрку:

.

А теперь – дело техники:

Вот так распутываются сложные примеры.) Теперь пора потренироваться с дробями.

Вычислить:

Ясно, что надо преобразовывать числитель. Как? По формуле квадрата суммы, разумеется. У нас есть ещё варианты разве? :) Возводим в квадрат, выносим множители, сокращаем показатели (где надо):

Во как! Получили в точности знаменатель нашей дроби.) Значит, вся дробь, очевидно, равна единице:

Ещё пример. Только теперь на другую формулу сокращённого умножения.)

Вычислить:

Понятно, что квадрат разности надо в дело применять. Выписываем знаменатель отдельно и - поехали!

Выносим множители из-под корней:

Следовательно,

Теперь всё нехорошее великолепно сокращается и получается:

Что ж, поднимаемся на следующий уровень. :)

Буквы и дополнительные условия

Буквенные выражения с корнями – штука более хитрая, чем числовые выражения, и является неиссякаемым источником досадных и очень грубых ошибок. Перекроем этот источник.) Ошибки всплывают из-за того, что частенько таких заданиях фигурируют отрицательные числа и выражения. Они либо даны нам прямо в задании, либо спрятаны в буквах и дополнительных условиях . А нам в процессе работы с корнями постоянно надо помнить, что в корнях чётной степени как под самим корнем, так и в результате извлечения корня должно быть неотрицательное выражение . Ключевой формулой в задачах этого пункта будет четвёртая формула:

С корнями нечётной степени вопросов никаких – там всегда всё извлекается что с плюсом, что с минусом. И минус, если что, выносится вперёд. Будем сразу разбираться с корнями чётных степеней.) Например, такое коротенькое задание.

Упростить: , если .

Казалось бы, всё просто. Получится просто икс.) Но зачем же тогда дополнительное условие ? В таких случаях полезно прикинуть на числах. Чисто для себя.) Если , то икс – заведомо отрицательное число. Минус три, например. Или минус сорок. Пусть . Можно минус три возвести в четвёртую степень? Конечно! Получится 81. Можно из 81 извлечь корень четвёртой степени? А почему нет? Можно! Получится тройка. Теперь проанализируем всю нашу цепочку:

Что мы видим? На входе было отрицательное число, а на выходе – уже положительное. Было минус три, стало плюс три.) Возвращаемся к буквам. Вне всяких сомнений, по модулю это будет точно икс, но только сам икс у нас с минусом (по условию!), а результат извлечения (в силу арифметического корня!) должен быть с плюсом. Как получить плюс? Очень просто! Для этого достаточно перед заведомо отрицательным числом поставить минус.) И правильное решение выглядит так:

Кстати сказать, если бы мы воспользовались формулой , то, вспомнив определение модуля, сразу получили бы верный ответ. Поскольку

|x| = -x при x<0.

Вынести множитель за знак корня: , где .

Первый взгляд – на подкоренное выражение. Тут всё ОК. При любом раскладе оно будет неотрицательным. Начинаем извлекать. По формуле корня из произведения, извлекаем корень из каждого множителя:

Откуда взялись модули, объяснять, думаю, уже не надо.) А теперь анализируем каждый из модулей.

Множитель | a | так и оставляем без изменений: у нас нету никакого условия на букву a . Мы не знаем, положительное она или отрицательная. Следующий модуль | b 2 | можно смело опустить: в любом случае выражение b 2 неотрицательно. А вот насчёт | c 3 | – тут уже задачка.) Если , то и c 3 <0. Стало быть, модуль надо раскрыть с минусом : | c 3 | = - c 3 . Итого верное решение будет такое:

А теперь – обратная задача. Не самая простая, сразу предупреждаю!

Внести множитель под знак корня : .

Если вы сразу запишете решение вот так

то вы попали в ловушку . Это неверное решение ! В чём же дело?

Давайте вглядимся в выражение под корнем . Под корнем четвёртой степени, как мы знаем, должно находиться неотрицательное выражение. Иначе корень смысла не имеет.) Поэтому А это, в свою очередь, значит, что и, следовательно, само также неположительно: .

И ошибка здесь состоит в том, что мы вносим под корень неположительное число : четвёртая степень превращает его в неотрицательное и получается неверный результат – слева заведомый минус, а справа уже плюс. А вносить под корень чётной степени мы имеем право только неотрицательные числа или выражения. А минус, если есть, оставлять перед корнем.) Как же нам выделить неотрицательный множитель в числе , зная, что оно само стопудово отрицательное? Да точно так же! Поставить минус.) А чтобы ничего не поменялось, скомпенсировать его ещё одним минусом. Вот так:

И теперь уже неотрицательное число (-b) спокойно вносим под корень по всем правилам:

Этот пример наглядно показывает, что, в отличие от других разделов математики, в корнях правильный ответ далеко не всегда вытекает автоматически из формул. Необходимо подумать и лично принять верное решение.) Особенно следует быть внимательнее со знаками в иррациональных уравнениях и неравенствах .

Разбираемся со следующим важным приёмом в работе с корнями – избавлением от иррациональности .

Избавление от иррациональности в дробях

Если в выражении присутствуют корни, то, напомню, такое выражение называется выражением с иррациональностью . В некоторых случаях бывает полезно от этой самой иррациональности (т.е. корней) избавиться. Как можно ликвидировать корень? Корень у нас пропадает при… возведении в степень. С показателем либо равным показателю корня, либо кратным ему. Но, если мы возведём корень в степень (т.е. помножим корень сам на себя нужное число раз), то выражение от этого поменяется. Нехорошо.) Однако в математике бывают темы, где умножение вполне себе безболезненно. В дробях, к примеру. Согласно основному свойству дроби, если числитель и знаменатель умножить (разделить) на одно и то же число, то значение дроби не изменится.

Допустим, нам дана вот такая дробь:

Можно ли избавиться от корня в знаменателе? Можно! Для этого корень надо возвести в куб. Чего нам не хватает в знаменателе для полного куба? Нам не хватает множителя , т.е. . Вот и домножаем числитель и знаменатель дроби на

Корень в знаменателе исчез. Но… он появился в числителе. Ничего не поделать, такова судьба.) Нам это уже не важно: нас просили знаменатель от корней освободить. Освободили? Безусловно.)

Кстати, те, кто уже в ладах с тригонометрией, возможно, обращали внимание на то, что в некоторых учебниках и таблицах, к примеру, обозначают по-разному: где-то , а где-то . Вопрос – что правильно? Ответ: всё правильно!) Если догадаться, что – это просто результат освобождения от иррациональности в знаменателе дроби . :)

Зачем нам освобождаться от иррациональности в дробях? Какая разница – в числителе корень сидит или в знаменателе? Калькулятор всё равно всё посчитает.) Ну, для тех, кто не расстаётся с калькулятором, разницы действительно практически никакой… Но, даже считая на калькуляторе, можно обратить внимание на то, что делить на целое число всегда удобнее и быстрее, чем на иррациональное . А уж про деление в столбик вообще умолчу.)

Следующий пример только подтвердит мои слова.

Как здесь ликвидировать квадратный корень в знаменателе? Если числитель и знаменатель помножить на выражение , то в знаменателе получится квадрат суммы. Сумма квадратов первого и второго чисел дадут нам просто числа безо всяких корней, что очень радует. Однако… всплывёт удвоенное произведение первого числа на второе, где корень из трёх всё равно останется. Не канает. Как быть? Вспомнить другую замечательную формулу сокращённого умножения! Где никаких удвоенных произведений, а только квадраты:

Такое выражение, которое при домножении какой-то суммы (или разности) выводит на разность квадратов , ещё называют сопряжённым выражением . В нашем примере сопряжённым выражением будет служить разность . Вот и домножаем на эту разность числитель и знаменатель:

Что тут можно сказать? В результате наших манипуляций не то что корень из знаменателя исчез – вообще дробь исчезла! :) Даже с калькулятором отнять корень из трёх от тройки проще, чем считать дробь с корнем в знаменателе. Ещё пример.

Освободиться от иррациональности в знаменателе дроби:

Как здесь выкручиваться? Формулы сокращённого умножения с квадратами сразу не катят – не получится полной ликвидации корней из-за того, что корень у нас в этот раз не квадратный, а кубический . Надо, чтобы корень как-то возвёлся в куб. Стало быть, применять надо какую-то из формул с кубами. Какую? Давайте подумаем. В знаменателе – сумма . Как нам добиться возведения корня в куб? Домножить на неполный квадрат разности ! Значит, применять будем формулу суммы кубов . Вот эту:

В качестве a у нас тройка, а в качестве b – корень кубический из пяти:

И снова дробь исчезла.) Такие ситуации, когда при освобождении от иррациональности в знаменателе дроби у нас вместе с корнями полностью исчезает сама дробь, встречаются очень часто. Как вам вот такой примерчик!

Вычислить:

Попробуйте просто сложить эти три дроби! Без ошибок! :) Один общий знаменатель чего стоит. А что, если попробовать освободиться от иррациональности в знаменателе каждой дроби? Что ж, пробуем:

Ух ты, как интересно! Все дроби пропали! Напрочь. И теперь пример решается в два счёта:

Просто и элегантно. И без долгих и утомительных вычислений. :)

Именно поэтому операцию освобождения от иррациональности в дробях надо уметь делать. В подобных навороченных примерах только она и спасает, да.) Разумеется, внимательность никто не отменял. Бывают задания, где просят избавиться от иррациональности в числителе . Эти задания ничем от рассмотренных не отличаются, только от корней очищается числитель.)

Более сложные примеры

Осталось рассмотреть некоторые специальные приёмы в работе с корнями и потренироваться распутывать не самые простые примеры. И тогда полученной информации уже будет достаточно для решения заданий с корнями любого уровня сложности. Итак – вперёд.) Для начала разберёмся, что делать со вложенными корнями, когда формула корня из корня не работает. Например, вот такой примерчик.

Вычислить:

Корень под корнем… К тому же под корнями сумма или разность. Стало быть, формула корня из корня (с перемножением показателей) здесь не действует . Значит, надо что-то делать с подкоренными выражениями : у нас просто нету других вариантов. В таких примерах чаще всего под большим корнем зашифрован полный квадрат какой-нибудь суммы. Или разности. А корень из квадрата уже отлично извлекается! И теперь наша задача – его расшифровать.) Такая расшифровка красиво делается через систему уравнений . Сейчас всё сами увидите.)

Итак, под первым корнем у нас вот такое выражение:

А вдруг, не угадали? Проверим! Возводим в квадрат по формуле квадрата суммы:

Всё верно.) Но… Откуда я взял это выражение ? С неба?

Нет.) Мы его чуть ниже получим честно. Просто по данному выражению я показываю, как именно составители заданий шифруют такие квадраты. :) Что такое 54? Это сумма квадратов первого и второго чисел . Причём, обратите внимание, уже без корней! А корень остаётся в удвоенном произведении , которое в нашем случае равно . Поэтому распутывание подобных примеров начинается с поиска удвоенного произведения. Если распутывать обычным подбором. И, кстати, о знаках. Тут всё просто. Если перед удвоенным плюс, то квадрат суммы. Если минус, то разности.) У нас плюс – значит, квадрат суммы.) А теперь – обещанный аналитический способ расшифровки. Через систему.)

Итак, у нас под корнем явно тусуется выражение (a+b) 2 , и наша задача – найти a и b . В нашем случае сумма квадратов даёт 54. Вот и пишем:

Теперь удвоенное произведение. Оно у нас . Так и записываем:

Получили вот такую системку:

Решаем обычным методом подстановки. Выражаем из второго уравнения, например, и подставляем в первое:

Решим первое уравнение:

Получили биквадратное уравнение относительно a . Считаем дискриминант:

Значит,

Получили аж четыре возможных значения a . Не пугаемся. Сейчас мы всё лишнее отсеем.) Если мы сейчас для каждого из четырёх найденных значений посчитаем соответствующие значения, то получим четыре решения нашей системы. Вот они:

И тут вопрос – а какое из решений нам подходит? Давайте подумаем. Отрицательные решения можно сразу отбросить: при возведении в квадрат минусы «сгорят», и всё подкоренное выражение в целом не изменится.) Остаются первые два варианта. Выбрать их можно совершенно произвольно: от перестановки слагаемых сумма всё равно не меняется.) Пусть, например, , а .

Итого получили под корнем квадрат вот такой суммы:

Всё чётко.)

Я не зря так детально описываю ход решения. Чтобы было понятно, как происходит расшифровка.) Но есть одна проблемка. Аналитический способ расшифровки хоть и надёжный, но весьма длинный и громоздкий: приходится решать биквадратное уравнение, получать четыре решения системы и потом ещё думать, какие из них выбрать… Хлопотно? Согласен, хлопотно. Этот способ безотказно работает в большинстве подобных примеров. Однако очень часто можно здорово сократить себе работу и найти оба числа творчески. Подбором.) Да-да! Сейчас, на примере второго слагаемого (второго корня), я покажу более лёгкий и быстрый способ выделения полного квадрата под корнем.

Итак, теперь у нас вот такой корень: .

Размышляем так: «Под корнем – скорее всего, зашифрованный полный квадрат. Раз перед удвоенным минус – значит, квадрат разности. Сумма квадратов первого и второго чисел даёт нам число 54. Но какие это квадраты? 1 и 53? 49 и 5? Слишком много вариантов… Нет, лучше начать распутывать с удвоенного произведения. Наши можно расписать как . Раз произведение удвоенное , то двойку сразу отметаем. Тогда кандидатами на роль a и b остаются 7 и . А вдруг, это 14 и /2 ? Не исключено. Но начинаем-то всегда с простого!» Итак, пусть , а . Проверим их на сумму квадратов:

Получилось! Значит, наше подкоренное выражение – это на самом деле квадрат разности:

Вот такой вот способ-лайт, чтобы не связываться с системой. Не всегда работает, но во многих таких примерах его вполне достаточно. Итак, под корнями – полные квадраты. Осталось только правильно извлечь корни, да досчитать пример:

А теперь разберём ещё более нестандартное задание на корни.)

Докажите, что число A – целое, если .

Впрямую ничего не извлекается, корни вложенные, да ещё и разных степеней… Кошмар! Однако, задание имеет смысл.) Стало быть, ключ к его решению имеется.) А ключ здесь такой. Рассмотрим наше равенство

как уравнение относительно A . Да-да! Хорошо бы избавиться от корней. Корни у нас кубические, поэтому возведём-ка обе части равенства в куб. По формуле куба суммы :

Кубы и корни кубические друг друга компенсируют, а под каждым большим корнем забираем одну скобку у квадрата и сворачиваем произведение разности и суммы в разность квадратов:

Отдельно сосчитаем разность квадратов под корнями:

Взглянул еще раз на табличку… И, поехали!

Начнем с простенького:

Минуууточку. это, а это значит, что мы можем записать вот так:

Усвоил? Вот тебе следующий:

Корни из получившихся чисел ровно не извлекаются? Не беда - вот тебе такие примеры:

А что, если множителей не два, а больше? То же самое! Формула умножения корней работает с любым количеством множителей:

Теперь полностью самостоятельно:

Ответы: Молодец! Согласись, все очень легко, главное знать таблицу умножения!

Деление корней

С умножением корней разобрались, теперь приступим к свойству деления.

Напомню, что формула в общем виде выглядит так:

А значит это, что корень из частного равен частному корней.

Ну что, давай разбираться на примерах:

Вот и вся наука. А вот такой пример:

Все не так гладко, как в первом примере, но, как видишь, ничего сложного нет.

А что, если попадется такое выражение:

Надо просто применить формулу в обратном направлении:

А вот такой примерчик:

Еще ты можешь встретить такое выражение:

Все то же самое, только здесь надо вспомнить, как переводить дроби (если не помнишь, загляни в тему и возвращайся!). Вспомнил? Теперь решаем!

Уверена, что ты со всем, всем справился, теперь попробуем возводить корни в степени.

Возведение в степень

А что же будет, если квадратный корень возвести в квадрат? Все просто, вспомним смысл квадратного корня из числа - это число, квадратный корень которого равен.

Так вот, если мы возводим число, квадратный корень которого равен, в квадрат, то что получаем?

Ну, конечно, !

Рассмотрим на примерах:

Все просто, правда? А если корень будет в другой степени? Ничего страшного!

Придерживайся той же логики и помни свойства и возможные действия со степенями.

Почитай теорию по теме « » и тебе все станет предельно ясно.

Вот, к примеру, такое выражение:

В этом примере степень четная, а если она будет нечетная? Опять же, примени свойства степени и разложи все на множители:

С этим вроде все ясно, а как извлечь корень из числа в степени? Вот, к примеру, такое:

Довольно просто, правда? А если степень больше двух? Следуем той же логике, используя свойства степеней:

Ну как, все понятно? Тогда реши самостоятельно примеры:

А вот и ответы:

Внесение под знак корня

Что мы только не научились делать с корнями! Осталось только потренироваться вносить число под знак корня!

Это совсем легко!

Допустим, у нас записано число

Что мы можем с ним сделать? Ну конечно, спрятать тройку под корнем, помня при этом, что тройка - корень квадратный из!

Зачем нам это нужно? Да просто, чтобы расширить наши возможности при решении примеров:

Как тебе такое свойство корней? Существенно упрощает жизнь? По мне, так точно! Только надо помнить, что вносить под знак квадратного корня мы можем только положительные числа.

Реши самостоятельно вот этот пример -
Справился? Давай смотреть, что у тебя должно получиться:

Молодец! У тебя получилось внести число под знак корня! Перейдем к не менее важному - рассмотрим, как сравнивать числа, содержащие квадратный корень!

Сравнение корней

Зачем нам учиться сравнивать числа, содержащие квадратный корень?

Очень просто. Часто, в больших и длиииинных выражениях, встречающихся на экзамене, мы получаем иррациональный ответ (помнишь, что это такое? Мы с тобой сегодня об этом уже говорили!)

Полученные ответы нам необходимо расположить на координатной прямой, например, чтобы определить, какой интервал подходит для решения уравнения. И вот здесь возникает загвоздка: калькулятора на экзамене нет, а без него как представить какое число больше, а какое меньше? То-то и оно!

Например, определи, что больше: или?

Сходу и не скажешь. Ну что, воспользуемся разобранным свойством внесения числа под знак корня?

Тогда вперед:

Ну и, очевидно, что чем больше число под знаком корня, тем больше сам корень!

Т.е. если, значит, .

Отсюда твердо делаем вывод, что. И никто не убедит нас в обратном!

Извлечение корней из больших чисел

До этого мы вносили множитель под знак корня, а как его вынести? Надо просто разложить его на множители и извлечь то, что извлекается!

Можно было пойти по иному пути и разложить на другие множители:

Неплохо, да? Любой из этих подходов верен, решай как тебе удобно.

Разложение на множители очень пригодится при решении таких нестандартных заданий, как вот это:

Не пугаемся, а действуем! Разложим каждый множитель под корнем на отдельные множители:

А теперь попробуй самостоятельно (без калькулятора! его на экзамене не будет):

Разве это конец? Не останавливаемся на полпути!

Вот и все, не так все и страшно, правда?

Получилось? Молодец, все верно!

А теперь попробуй вот такой пример решить:

А пример-то - крепкий орешек, так сходу и не разберешься, как к нему подступиться. Но нам он, конечно, по зубам.

Ну что, начнем раскладывать на множители? Сразу заметим, что можно поделить число на (вспоминаем признаки делимости):

А теперь, попробуй сам (опять же, без калькулятора!):

Ну что, получилось? Молодец, все верно!

Подведем итоги

  1. Квадратным корнем (арифметическим квадратным корнем) из неотрицательного числа называется такое неотрицательное число, квадрат которого равен.
    .
  2. Если мы просто извлекаем квадратный корень из чего-либо, то всегда получаем один неотрицательный результат.
  3. Свойства арифметического корня:
  4. При сравнении квадратных корней необходимо помнить, что чем больше число под знаком корня, тем больше сам корень.

Как тебе квадратный корень? Все понятно?

Мы постарались объяснить тебе без воды все что нужно знать на экзамене про квадратный корень.

Теперь твоя очередь. Напиши нам сложная это для тебя тема или нет.

Узнал ты что-то новое или все было и так ясно.

Пиши в комментариях и удачи на экзаменах!