Источник свч излучения. Влияние на организм сверхвысокочастотного электромагнитного (СВЧ-ЭМ) поля




Я был сильно удивлён, когда мой простенький самодельный детектор-индикатор, зашкалил рядомс работающей СВЧ печкой в нашей рабочей столовой. Она же вся экранирована, может неисправность какая? Решил проверить свою, новую печь, ей практически не пользовались. Индикатор тоже отклонился на всю шкалу!


Такой простенький индикатор я собираю за короткое время каждый раз, когда выезжаю на полевые испытания приемно-передающей аппаратуры. Очень помогает в работе, не надо таскать за собой массу приборов, простой самоделкой работоспособность передатчика всегда легко проверить, (где антенный разъём не до конца довернули, или питание забыли включить). Заказчикам такой стиль ретро-индикатора очень нравится, приходится оставлять в подарок.

Достоинство – это простота конструкции и отсутствие питания. Вечный прибор.

Делается легко, намного проще, чем точно такой же «Детектор из сетевого удлинителя и тазика для варенья » средневолнового диапазона. Вместо сетевого удлинителя (катушки индуктивности) – кусок медного провода, по аналогии можно несколько проводов параллельно, хуже не будет. Сам провод в виде окружности длиной 17 см, толщинойне менее 0,5 мм (для большей гибкости использую три таких провода) является как колебательным контуром внизу, так и рамочной антенной верхней части диапазона, который составляет от 900 до 2450 МГц (выше не проверял работоспособность). Можно применить более сложную направленную антенну и согласование с входом, но такое отступление не будет соответствовать названию темы. Переменный, построечныйили просто конденсатор (он же тазик) не нужен, на СВЧ – два соединения рядом, уже конденсатор.

Германиевый диод искать не надо, его заменит PIN диод HSMP : 3880, 3802, 3810, 3812 и т.д., или HSHS 2812, (я его использовал). Хотите продвинуться выше частоты СВЧ печки (2450 МГц), выбирайте диоды с меньшей ёмкостью (0,2 пФ), возможно подойдут диоды HSMP -3860 – 3864. При монтаже не перегрейте. Паять надо точечно-быстро, за 1 сек.

Вместо высокоомных наушников - стрелочный индикатор.Магнитоэлектрическая система имеет преимущество - инерционность. Помогает плавно двигаться стрелке конденсатор фильтра (0,1 мкФ). Чем выше сопротивление индикатора, тем чувствительнее измеритель поля (сопротивления моих индикаторов составляет от 0,5 до 1,75 кОм). Заложенная в отклоняющейся или подёргивающейся стрелке информация действует на присутствующих магически.

Такой индикатор поля, установленный рядом с головой разговаривающей по мобильному телефону, сначала вызовет на лице изумление, возможно, вернёт человека к действительности, спасёт от возможных заболеваний.

Если есть ещё силы и здоровье обязательно ткните мышкой в одну из этих статей.

Вместо стрелочного прибора можно использовать тестер, который будет измерять постоянное напряжение на самом чувствительном пределе.

Схема индикатора СВЧ со светодиодом.
Индикатор СВЧ со светодиодом.

Попробовал в качестве индикатора светодиод . Такую конструкцию можно оформить в виде брелка, используя плоскую 3-х вольтовою батарейку, или вставить в пустой корпус мобильного телефона. Дежурный ток устройства 0,25 мА, рабочий ток напрямую зависит от яркости светодиода и составит около 5 мА. Напряжение, выпрямленное диодом, усиливается операционным усилителем, накапливается на конденсаторе и открывает ключевое устройство на транзисторе, который включает светодиод.

Если стрелочный индикатор без батарейки отклонялся в радиусе 0,5 - 1 метра, то цветомузыка на диоде отодвинулась до 5 метров, как от сотового телефона, так и от СВЧ печки. Насчёт цветомузыки не ошибся, сами убедитесь, что максимальная мощность будет только при разговоре по мобильному телефону и при постороннем громком шуме.

Регулировка.


Я собирал несколько таких индикаторов, и заработали они сразу. Но всё же нюансы бывают. Во включённом состоянии на всех выводах микросхемы, кроме пятого, напряжение должно быть равно 0. Если это условие не выполнено, соедините первый вывод микросхемы через резистор 39 кОм с минусом (землёй). Встречается, что конфигурация СВЧ диодов в сборке не совпадает с чертежом, поэтому надо придерживаться электрической схемы, а перед установкой я бы советовал прозвонить диоды на их соответствие.

Для удобства пользования можно ухудшить чувствительность, уменьшив резистор 1мОм, или уменьшить длину витка провода. С приведёнными номиналами поля СВЧ базовых телефонных станций чувствует в радиусе 50 – 100 м.
С таким индикатором можно составить экологическую карту своего района и выделить места, где нельзя зависать с колясками или долго засиживаться с детьми.

Находиться под антеннами базовых станций
безопаснее, чем в радиусе 10 - 100 метров от них.

Благодаря этому прибору я пришёл к выводу,какие мобильные телефоны лучше, то есть имеют меньшее излучение. Поскольку это не реклама, то скажу сугубо конфиденциально, шёпотом. Лучшие телефоны – это современные, с выходом в Интернет, чем дороже, тем лучше.

Аналоговый индикатор уровня.

Я решил попробовать чуть усложнить индикатор СВЧ, для чего добавил в него аналоговый измеритель уровня. Для удобства использовал ту же элементную базу. На схеме три операционных усилителя постоянного тока с разным коэффициентом усиления. В макете я остановился на 3-х каскадах, хотя запланировать можно и 4-е, используя микросхему LMV 824 (4-е ОУ в одном корпусе). Применив питание от 3, (3,7 телефонный аккумулятор) и 4,5 вольта пришёл к выводу, что можно обойтись без ключевого каскада на транзисторе. Таким образом, получилась одна микросхема, свч диод и 4-е светодиода. Учитывая условия сильных электромагнитных полей, в которых будет работать индикатор, использовал по всем входам, по цепям обратной связи и по питанию ОУ блокировочные и фильтрующие конденсаторы.
Регулировка.
Во включённом состоянии на всех выводах микросхемы, кроме пятого, напряжение должно быть равно 0. Если это условие не выполнено, соедините первый вывод микросхемы через резистор 39 кОм с минусом (землёй). Встречается, что конфигурация СВЧ диодов в сборке не совпадает с чертежом, поэтому надо придерживаться электрической схемы, а перед установкой я бы советовал прозвонить диоды на их соответствие.

Данный макет уже прошёл испытания.

Интервал от 3-х горящих светодиодов до полностью потушенных составляет около 20 дБ.

Питание от 3-х до 4,5 вольт. Дежурный ток от 0,65 до 0,75 мА. Рабочий ток при загорании 1-го светодиода составляет от 3 до 5 мА.

Этот индикатор СВЧ поля на микросхеме с 4-я ОУ собрал Николай.
Вот его схема.


Размеры и маркировка выводов микросхемы LMV824.


Монтаж индикатора СВЧ
на микросхеме LMV824.

Аналогичная по параметрам микросхема MC 33174D , включающая в себя четыре операционных усилителя, выполненная в дип-корпусе имеет больший размер, а поэтому более удобна для радиолюбительского монтажа. Электрическая конфигурация выводов полностью совпадает с микросхемой L МV 824. На микросхеме MC 33174D я сделал макет СВЧ индикатора на четыре светодиода. Между выводами 6 и 7 микросхемы добавлен резистор 9,1 кОм и параллельно ему конденсатор 0,1 мкФ. Седьмой вывод микросхемы, через резистор 680 Ом соединяется с 4-м светодиодом. Типоразмер деталей 06 03. Питание макета от литиевого элемента 3,3 – 4,2 вольта.

Индикатор на микросхеме МС33174.
Оборотная сторона.

Оригинальную конструкцию экономичного индикатора поля имеет сувенир сделанный в Китае. В этой недорогой игрушке есть: радиоприёмник, часы с датой, градусник и, наконец, индикатор поля. Бескорпусная, залитая микросхема потребляет ничтожно мало энергии, поскольку работает в режиме таймирования, на включение мобильного телефона реагирует с расстояния 1 метра, имитируя несколько секунд светодиодной индикацией аварийную сигнализацию передними фарами. Такие схемы выполняются на программируемых микропроцессорах с минимальным количеством деталей.

Дополнение к комментариям.

Селективные измерители поля для любительского диапазона 430 - 440 МГц
и для диапазона PMR (446 МГц).

Индикаторы СВЧ полей для любительских диапазонов от 430 до 446 МГц можно сделать селективными, добавив дополнительный контур L к Ск, где L к представляет собой виток провода диаметром 0,5 мм и длиной 3 см, а Ск - подстроечный конденсатор с номиналом 2 – 6 пФ. Сам виток провода, как вариант, можно изготовить в виде 3-х витковой катушки, с шагом намотанной на оправке диаметром 2 мм тем же проводом. К контуру необходимо подсоединить антенну в виде отрезка провода длиной 17 см через конденсатор связи 3.3 пФ.


Диапазон 430 - 446 МГц. Вместо витка катушка с шаговой намоткой.

Схема на диапазоны
430 - 446 МГц.

Монтаж на частотный диапазон
430 - 446 МГц.

Кстати, если серьёзно заниматься СВЧ измерением отдельных частот, то можно вместо контура использовать селективные фильтры на ПАВ-ах. В столичных радиомагазинах их ассортимент в настоящее время более чем достаточен. В схему необходимо будет добавить ВЧ трансформатор после фильтра.

Но это уже другая тема, не отвечающая названию поста.


В. КОЛЯДА. Материал подготовлен редакцией "Покупаем от А до Я" по просьбе журнала "Наука и жизнь".

Наука и жизнь // Иллюстрации

Рис. 1. Шкала электромагнитного излучения.

Рис. 2. Дипольные молекулы: а - в отсутствие электрического поля; б - в постоянном электрическом поле; в - в переменном электрическом поле.

Рис. 3. Проникновение микроволн в глубь куска мяса.

Рис. 4. Маркировка посуды.

Рис. 5. Ослабление энергии СВЧ-излучения в атмосфере: на каждой следующей линии по мере удаления от печи мощность излучения в 10 раз меньше, чем на предыдущей.

Рис. 6. Основные элементы микроволновой печи.

Рис. 7. Дверца микроволновой печи.

Рис. 8. Печь с диссектором (а) и поворотным столом (б).

Во второй половине ХХ века в наш обиход вошли печи, нагрев пищи в которых производится невидимыми лучами - микроволнами.

Подобно многим другим открытиям, существенно повлиявшим на повседневную жизнь людей, открытие теплового воздействия микроволн произошло случайно. В 1942 году американский физик Перси Спенсер работал в лаборатории компании "Райтеон" с устройством, излучавшим сверхвысокочастотные волны. Разные источники по-разному описывают события, случившиеся в тот день в лаборатории. По одной версии, Спенсер положил на устройство свой бутерброд, а сняв его через несколько минут, обнаружил, что бутерброд прогрелся до середины. По другой версии, разогрелся и растаял шоколад, который был у Спенсера в кармане, когда он работал возле своей установки, и, осененный счастливой догадкой, изобретатель кинулся в буфет за сырыми кукурузными зернами. Поднесенный к установке попкорн вскоре с треском начал лопаться…

Так или иначе эффект был обнаружен. В 1945 году Спенсер получил патент на использование микроволн для приготовления пищи, а в 1947-м на кухнях госпиталей и военных столовых, где требования к качеству пищи были не столь высоки, появились первые приборы для приготовления пищи с помощью микроволн. Эти изделия фирмы "Райтеон" высотой в человеческий рост весили 340 кг и стоили 3000 долларов за штуку.

Понадобилось полтора десятилетия, чтобы "довести до ума" печь, в которой пища готовится с помощью невидимых волн. В 1962 году японская фирма "Sharp" выпустила в продажу первую серийную микроволновую печь, которая, впрочем, поначалу не вызвала потребительского ажиотажа. Этой же фирмой в 1966 году был разработан вращающийся стол, в 1979-м впервые применена микропроцессорная система управления печью, а в 1999-м разработана первая микроволновая печь с выходом в Интернет.

Сегодня десятки фирм выпускают бытовые микроволновки. Только в США в 2000 году продали 12,6 млн микроволновых печей, не считая комбинированных духовок со встроенным источником микроволн.

Опыт применения миллионов микроволновых печей во многих странах в течение последних десятилетий доказал неоспоримые удобства этого способа приготовления пищи - быстроту, экономичность, простоту пользования. Сам механизм приготовления пищи с помощью микроволн, с которым мы познакомим вас ниже, предопределяет сохранение молекулярной структуры, а значит, и вкусовых качеств продуктов.

Что такое микроволны

Микроволновое, или сверхвысокочастотное (СВЧ), излучение - это электромагнитные волны длиной от одного миллиметра до одного метра, которые используются не только в микроволновых печах, но и в радиолокации, радионавигации, системах спутникового телевидения, сотовой телефонии и т.д. Микроволны существуют в природе, их испускает Солнце.

Место микроволн на шкале электромагнитного излучения показано на рис. 1.

В бытовых микроволновых печах используются микроволны, частота f которых составляет 2450 МГц. Такая частота установлена для микроволновых печей специальными международными соглашениями, чтобы не создавать помех работе радаров и иных устройств, использующих микроволны.

Зная, что электромагнитные волны распространяются со скоростью света с , равной 300 000 км/с, нетрудно подсчитать, чему равна длина волны L микроволнового излучения данной частоты:

L = c /f = 12,25 см.

Чтобы понять принцип работы микроволновой печи, нужно вспомнить еще один факт из школьного курса физики: волна представляет собой сочетание переменных полей - электрического и магнитного. Продукты, употребляемые нами в пищу, магнитными свойствами не обладают, поэтому о магнитном поле мы можем забыть. А вот изменения электрического поля, которые несет с собой волна, для нас очень кстати...

Как микроволны нагревают пищу?

В состав продуктов питания входят многие вещества: минеральные соли, жиры, сахар, вода. Чтобы нагреть пищу с помощью микроволн, необходимо присутствие в ней дипольных молекул, то есть таких, на одном конце которых имеется положительный электрический заряд, а на другом - отрицательный. К счастью, подобных молекул в пище предостаточно - это молекулы и жиров и сахаров, но главное, что диполем является молекула воды - самого распространенного в природе вещества.

Каждый кусочек овощей, мяса, рыбы, фруктов содержит миллионы дипольных молекул.

В отсутствие электрического поля молекулы расположены хаотически (рис. 2,а).

В электрическом поле они выстраиваются строго по направлению силовых линий поля, "плюсом" в одну сторону, "минусом" в другую. Стоит полю поменять направление на противоположное, как молекулы тут же переворачиваются на 180 о (рис. 2,б).

А теперь вспомним, что частота микроволн 2450 Мгц. Один герц - это одно колебание в секунду, мегагерц - один миллион колебаний в секунду. За один период волны поле меняет свое направление дважды: был "плюс", стал "минус", и снова вернулся исходный "плюс". Значит, поле, в котором находятся наши молекулы, меняет полярность 4 900 000 000 раз в секунду! Под действием микроволнового излучения молекулы кувыркаются с бешеной частотой и в буквальном смысле трутся одна о другую при переворотах (рис. 2,в). Выделяющееся при этом тепло и служит причиной разогрева пищи.

Продукты нагреваются под действием микроволн примерно так же, как нагреваются наши ладони, когда мы быстро трем их друг о друга. Сходство состоит и еще в одном: когда мы трем кожу одной руки о кожу другой, тепло проникает в глубь мышечной ткани. Так и микроволны: они работают только в относительно небольшом поверхностном слое пищи, не проникая внутрь глубже, чем на 1-3 см (рис. 3). Поэтому нагрев продуктов происходит за счет двух физических механизмов - прогрева микроволнами поверхностного слоя и последующего проникновения тепла в глубину продукта за счет теплопроводности.

Отсюда сразу следует рекомендация: если нужно приготовить в микроволновке, например, большой кусок мяса, лучше не включать печь на полную мощность, а работать на средней мощности, но зато увеличить время пребывания куска в печи. Тогда тепло из наружного слоя успеет проникнуть в глубь мяса и хорошо пропечет внутреннюю часть куска, а снаружи кусок не подгорит.

Из тех же соображений жидкие продукты, например супы, лучше периодически помешивать, вынимая время от времени кастрюльку из печи. Этим вы поможете проникновению тепла в глубь емкости с супом.

Посуда для микроволновки

Разные материалы по-разному ведут себя по отношению к микроволнам, и для СВЧ-печи годится не всякая посуда. Металл отражает микроволновое излучение, поэтому внутренние стенки полости печи делают из металла, чтобы он отражал волны к пище. Соответственно, металлическая посуда для микроволновок не годится.

Исключением является низкая открытая металлическая посуда (например, алюминиевые лотки для продуктов). Такую посуду можно помещать в микроволновую печь, но, во-первых, только вниз, на самое дно, а не на второй по высоте уровень (некоторые микроволновки допускают "двухэтажное" размещение лотков); во-вторых, нужно, чтобы печь работала не на максимальной мощности (лучше увеличить время работы), а края лотка отстояли от стенок камеры не менее, чем на 2 см, чтобы не образовался электрический разряд.

Стекло, фарфор, сухие картон и бумага пропускают микроволны сквозь себя (влажный картон начнет разогреваться и не пропустит микроволны, пока не высохнет). Посуду из стекла можно применять в микроволновке, но только при условии, что она выдержит высокую температуру нагрева. Для СВЧ-печей выпускается посуда из специального стекла (например, Pyrex) с низким коэффициентом теплового расширения, стойкая к нагреву.

В последнее время многие производители снабжают посуду маркировкой, указывающей на допустимость применения в микроволновой печи (рис. 4). Прежде чем пользоваться посудой, обратите внимание на ее маркировку.

Учтите, что, например, пластиковые термостойкие контейнеры для пищи прекрасно пропускают микроволны, но и они могут не выдержать высокой температуры, если дополнительно к микроволнам включить еще и гриль.

Продукты питания поглощают микроволны. Так же ведут себя глина и пористая керамика, применять которые в микроволновках не рекомендуется. Посуда из пористых материалов задерживает влагу и нагревается сама вместо того, чтобы пропускать микроволны к продуктам. В результате продуктам достается меньше микроволновой энергии, а вы рискуете обжечься, вынимая посуду из печи.

Приведем три главных правила на тему: что нельзя помещать в микроволновку.

1. Нельзя помещать в микроволновку посуду с золотыми или иными металлическими ободками. Дело в том, что переменное электрическое поле микроволнового излучения приводит к появлению в металлических предметах наведенных токов. Сами по себе эти токи ничего страшного не представляют, но в тонком проводящем слое, каким является слой декоративного металлического покрытия на посуде, плотность наведенных токов может оказаться столь высокой, что ободок, а с ним и посуда, перегреется и разрушится.

Вообще в микроволновке не место металлическим предметам с острыми кромками, заостренны ми концами (например, вилкам): высокая плотность наведенного тока на острых кромках проводника может стать причиной оплавления металла или появления электрического разряда.

2. Ни в коем случае не следует ставить в микроволновку плотно закрытые емкости: бутылки, консервные банки, контейнеры с продуктами и т.д., а также яйца (неважно, сырые или вареные). Все перечисленные предметы при нагреве могут разорваться и привести печь в негодность.

К предметам, которые могут разорваться при нагреве, относятся и продукты питания, имеющие кожицу или оболочку, например помидоры, сосиски, сардельки, колбаски и т.д. Чтобы избежать взрывного расширения подобных продуктов, проколите оболочку или кожицу вилкой перед тем, как помещать их в печь. Тогда пар, образующийся внутри при нагреве, сможет спокойно выйти наружу и не разорвет помидор или сосиску.

3. И последнее: нельзя, чтобы в микроволновк е была… пустота. Иными словами, нельзя включать пустую печь , без единого предмета, который поглощал бы микроволны. В качестве минимальной загрузки печи при любом ее включении (например, при проверке работоспособности) принята простая и всем понятная единица: стакан воды (200 мл).

Включение пустой микроволновой печи чревато ее серьезным повреждением. Не встречая на своем пути никаких препятствий, микроволны будут многократно отражаться от внутренних стенок полости печи, а сконцентрированная энергия излучения может вывести печь из строя.

Кстати, если вы хотите довести воду в стакане или ином высоком узком сосуде до кипения, не забудьте опустить в него чайную ложечку перед тем, как поставить стакан в печь. Дело в том, что закипание воды под действием микроволн происходит не так, как, например, в чайнике, где тепло подводится к воде только снизу, со стороны дна. Микроволновый нагрев идет со всех сторон, а если стакан узкий - практически по всему объему воды. В чайнике вода при закипании бурлит, поскольку со дна поднимаются пузырьки растворенного в воде воздуха. В микроволновке вода дойдет до температуры кипения, но пузырьков не будет - это называется эффектом задержки кипения. Зато когда вы достанете стакан из печи, всколыхнув его при этом, - вода в стакане запоздало забурлит, и кипяток может ошпарить вам руки.

Если вы не знаете, из какого материала изготовлена посуда, проделайте простой опыт, который позволит вам определить, годится она для этой цели или нет. Понятное дело, речь не идет о металле: опознать его несложно. Поставьте порожнюю посуду в печь рядом со стаканом, наполненным водой (не забудьте про ложечку!). Включите печь и дайте ей поработать в течение одной минуты на максимальной мощности. Если после этого посуда осталась холодной, значит, она изготовлена из прозрачного для микроволн материала и ею можно пользоваться. Если же посуда нагрелась, значит, она изготовлена из поглощающего микроволны материала и вам вряд ли удастся приготовить в ней пищу.

Опасны ли микроволны?

С микроволновыми печами связан ряд заблуждений, которые объясняются непониманием характера этого вида электромагнитных волн и механизма микроволнового нагрева. Надеемся, что наш рассказ поможет преодолеть такие предубеждения.

Микроволны радиоактивны или делают продукты радиоактивными. Это неверно: микроволны относятся к категории неионизирующих излучений. Они не оказывают никакого радиоактивного воздействия на вещества, биологические ткани и продукты питания.

Микроволны изменяют молекулярную структуру продуктов питания или делают продукты канцерогенными.

Это тоже неверно. Принцип действия микроволн иной, чем у рентгеновских лучей или у ионизирующих излучений, и сделать продукты канцерогенными они не могут. Напротив, поскольку приготовление пищи при помощи микроволн требует очень небольшого количества жиров, готовое блюдо содержит меньше перегоревшего жира с измененной при тепловой обработке молекулярной структурой. Поэтому приготовление пищи с помощью микроволн полезнее для здоровья и не представляет для человека никакой опасности.

Микроволновые печи испускают опасное излучение.

Это не соответствует действительности. Хотя непосредственное воздействие микроволн может вызвать тепловое поражение тканей, риск при пользовании исправной микроволновой печью полностью отсутствует. Конструкцией печи предусмотрены жесткие меры для предотвращения выхода излучения наружу: имеются продублированные устройства блокировки источника микроволн при открывании дверцы печи, а сама дверца исключает выход микроволн за пределы полости. Ни корпус, ни любая иная часть печи, ни помещенные в печь продукты питания не накапливают электромагнитное излучение микроволнового диапазона. Как только печь выключается, излучение микроволн прекращается.

Тем, кто опасается даже близко подходить к микроволновой печи, нужно знать, что микроволны очень быстро затухают в атмосфере. Для иллюстрации приведем такой пример: допустимая западными стандартами мощность СВЧ-излучения на расстоянии 5 см от новой, только что купленной печи составляет 5 милливатт на квадратный сантиметр. Уже на расстоянии полуметра от микроволновки излучение становится в 100 раз слабее (см. рис. 5).

Как следствие столь сильного затухания, вклад микроволн в общий фон окружающего нас электромагнитного излучения не выше, чем, скажем, от телевизора, перед которым мы готовы сидеть часами без всякого опасения, или мобильного телефона, который мы так часто держим у виска. Просто не стоит опираться локтем на работающую микроволновую печь или прислоняться лицом к дверце, пытаясь разглядеть, что происходит в полости. Достаточно отойти от печи на расстояние вытянутой руки, и можно чувствовать себя в полной безопасности.

Откуда берутся микроволны

Источником микроволнового излучения является высоковольтный вакуумный прибор - магнетрон . Чтобы антенна магнетрона излучала микроволны, к нити накала магнетрона необходимо подать высокое напряжение (порядка 3-4 КВт). Поэтому сетевого напряжения питания (220 В) магнетрону недостаточно, и питается он через специальный высоковольтный трансформатор (рис. 6).

Мощность магнетрона современных микроволновых печей составляет 700-850 Вт. Этого достаточно, чтобы за несколько минут довести до кипения воду в 200-граммовом стакане. Для охлаждения магнетрона рядом с ним имеется вентилятор, непрерывно обдувающий его воздухом.

Порожденные магнетроном микроволны поступают в полость печи по волноводу - каналу с металлическими стенками, отражающими СВЧ-излучение. В одних микроволновках волны входят в полость только через одно отверстие (как правило, под "потолком" полости), в других - через два отверстия: у "потолка" и у "дна". Если заглянуть в полость печи, то можно увидеть слюдяные пластинки, которые закрывают отверстия для ввода микроволн. Пластинки не позволяют попадать в волновод брызгам жира, а проходу микроволн они совершенно не мешают, поскольку слюда прозрачна для излучения. Слюдяные пластинки со временем пропитываются жиром, становятся рыхлыми, и их нужно менять на новые. Можно вырезать новую пластинку из листка слюды самому по форме старой, но лучше купить новую пластинку в сервисном центре, который обслуживает технику данной торговой марки, благо стоит она недорого.

Полость микроволновки изготавливается из металла, который может иметь то или иное покрытие. В самых дешевых моделях СВЧ-печей внутренняя поверхность стенок полости покрыта краской "под эмаль". Такое покрытие не отличается стойкостью к воздействию высоких температур, поэтому не применяется в моделях, где дополнительно к микроволнам пища подогревается грилем.

Более стойким является покрытие стенок полости эмалью или специальной керамикой. Стенки с таким покрытием легко моются и выдерживают высокие температуры. Недостатком эмали и керамики является их хрупкость по отношению к ударам. Ставя посуду в полость микроволновки, нетрудно случайно задеть стенку, а это может повредить нанесенное на нее покрытие. Поэтому, если вы приобрели СВЧ-печь с эмалевым или керамическим покрытием стенок, обращайтесь с ней осторожно.

Наиболее прочными и стойкими в отношении ударов являются стенки из нержавеющей стали. Плюс этого материала - прекрасное отражение микроволн. Минус - то, что если хозяйка уделяет не слишком много внимания очистке внутренней полости СВЧ-печи, то не удаленные вовремя брызги жира и пищи могут оставить следы на нержавеющей поверхности.

Объем полости микроволновой печи служит одной из важных потребительских характеристик. Компактные печи с объемом полости 8,5-15 л служат для размораживания или приготовления малых порций пищи. Они идеально подходят для одиноких людей либо для выполнения специальных задач, например для разогрева бутылочки с детским питанием. Печи с полостью объемом 16-19 л годятся для семейной пары. В такую печь можно поместить небольшую курицу. Печи средних габаритов имеют объем полости 20-35 л и подходят для семьи из трех-четырех человек. Наконец, для большой семьи (пять-шесть человек) нужна СВ-печь с полостью объемом 36-45 л, позволяющая испечь гуся, индейку или большой пирог.

Очень важным элементом микроволновой печи является дверца. Она должна дать возможность видеть, что происходит в полости, и при этом исключить выход микроволн наружу. Дверца представляет собой многослойный пирог из стеклянных или пластмассовых пластин (рис. 7).

Кроме того, между пластинами обязательно есть сетка из перфорированного металлического листа. Металл отражает микроволны назад, в полость печи, а отверстия перфорации, которые делают его прозрачным для обзора, имеют диаметр не более 3 мм. Вспомним, что длина волны СВЧ-излучения равна 12,25 см. Ясно, что через трехмиллиметровые отверстия такой волне не пройти.

Чтобы излучение не нашло лазейки там, где дверца прилегает к срезу полости, по периметру дверцы вмонтирован уплотнитель из диэлектрического материала. Он плотно прилегает к переднему торцу корпуса СВЧ-печи при закрытии дверцы. Толщина уплотнителя составляет порядка четверти длины волны СВЧ-излучения. Здесь используется расчет, основанный на физике волн: как известно, волны в противофазе гасят друг друга. Благодаря точно подобранной толщине уплотнителя обеспечивается так называемая отрицательная интерференция волны, проникшей внутрь материала уплотнителя, и отраженной волны, выходящей из уплотнителя наружу. Благодаря этому уплотнитель служит ловушкой, надежно гасящей излучение.

Чтобы полностью исключить возможность генерации микроволн при открытой дверце камеры, используется набор нескольких дублирующих друг друга независимых выключателей. Эти выключатели замыкаются контактными штырями на дверце печи и разрывают цепь питания магнетрона даже при небольшой неплотности закрытия дверцы.

Присмотревшись к микроволновым печам, выставленным в торговом зале крупного магазина бытовой техники, вы сможете заметить, что они различаются по направлению открытия дверцы: у одних печей дверца открывается в сторону (обычно влево), а у других откидывается к вам, образуя небольшую полочку. Последний вариант хоть и встречается реже, но дает дополнительное удобство при пользовании печью: горизонтальная плоскость открытой дверцы служит опорой при загрузке посуды в полость печи или при извлечении готового блюда. Нужно только не перегружать дверцу излишним грузом и не опираться на нее.

Как "перемешать" микроволны

Микроволны, вошедшие по волноводу в полость печи, хаотично отражаются от стенок и рано или поздно попадают на помещенные в печь продукты. При этом на каждую точку, скажем, куриной тушки, которую мы хотим разморозить либо поджарить, приходят волны с самых разных направлений. Неприятность состоит в том, что уже упомянутая нами интерференция может сработать как в "плюс", так и в "минус": пришедшие в фазе волны усилят одна другую и прогреют участок, на который они попали, а пришедшие в противофазе - погасят друг друга, и проку от них не будет никакого.

Чтобы волны проникали в продукты равномерно, их надо как бы "перемешать" в полости печи. Самим же продуктам лучше в буквальном смысле повертеться в полости, подставляя под поток излучения разные бока. Так в микроволновых печах появился поворотный стол - блюдо, опирающееся на небольшие ролики и приводимое в движение электромотором (рис. 8,б).

"Перемешивать" микроволны можно разными способами. Наиболее простое и прямолинейное решение - подвесить под "потолком" полости мешалку: вращающуюся крыльчатку с металлическими лопастями, которые отражают микроволны. Такая мешалка называется диссектор(рис. 8,а). Он хорош своей простотой и, как следствие, низкой стоимостью. Но, к сожалению, высокой равномерностью волнового поля СВЧ-печи с механическим отражателем микроволн не отличаются.

Сочетание вращающегося диссектора и поворотного стола для продуктов иногда носит специальное название. Так, в микроволновых печах Mielе это называется системой Duplomatic.

В некоторых микроволновках (например, модели Y82, Y87, ET6 от "Moulinex") сделаны два поворотных стола, расположенных один над другим. Такая система называется DUO и позволяет готовить два блюда одновременно. Каждый стол имеет отдельный привод через гнездо на задней стенке полости печи.

Более тонким, но зато и эффективным способом достижения равномерного волнового поля является тщательная работа над геометрией внутренней полости печи и создание оптимальных условий для отражения волн от ее стенок. Такие "продвинутые" системы распределения микроволн у каждого производителя печей имеют свое "фирменное" название.

Расписание работы магнетрона

Любая микроволновая печь позволяет владельцу задать мощность, необходимую для выполнения той или иной функции: от минимальной мощности, достаточной для поддержания пищи подогретой, до полной мощности, которая нужна для приготовления пищи в загруженной продуктами печи.

Особенностью магнетронов, применяемых в большинстве микроволновых печей, является то, что они не могут "гореть вполнакала". Поэтому, чтобы печь работала не на полной, а на уменьшенной мощности, можно лишь периодически выключать магнетрон, прекращая на какое-то время генерацию микроволн.

Когда печь работает на минимальной мощности (пусть это будет 90 Вт, при этом пища в полости печи поддерживается в подогретом состоянии), магнетрон включается на 4 с, затем отключается на 17 с, и эти циклы включения-выключения все время чередуются.

Увеличим мощность, скажем, до 160 Вт, если нам нужно разморозить продукты. Теперь магнетрон включается на 6 с, а отключается на 15 с. Прибавим мощность: при 360 Вт длительность циклов включения и выключения почти сравнялась - это 10 с и 11 с соответственно.

Заметим, что суммарная длительность циклов включения и выключения магнетрона остается постоянной (4 + 17, 6 + 15, 10 + 11) и составляет 21 с.

Наконец, если печь включена на полную мощность (в нашем примере это 1000 Вт), магнетрон работает постоянно, не отключаясь.

В последние годы на отечественном рынке появились модели микроволновых печей, в которых питание магнетрона осуществляется через устройство под названием "инвертор". Производители этих печей ("Panasonic", "Siemens") подчеркивают такие преимущества инверторной схемы, как компактность узла излучения микроволн, позволяющего увеличить объем полости при неизменных внешних габаритах печи и более эффективное преобразование потребляемой электроэнергии в энергию микроволн.

Инверторные системы питания широко применяются, например, в кондиционерах воздуха и позволяют плавно менять их мощность. В СВЧ-печах инверторные системы питания дают возможность плавно менять мощность источника излучения, вместо того чтобы отключать его каждые несколько секунд.

Благодаря плавному изменению мощности излучателя микроволн в печах с инвертором температура также меняется плавно, в отличие от традиционных печей, где из-за периодического выключения магнетрона время от времени прекращается подвод излучения. Впрочем, будем справедливы к традиционным печам: эти колебания температуры не столь уж сильны и вряд ли сказываются на качестве приготовленной пищи.

Так же, как в случае кондиционеров, микроволновки с инверторной системой питания стоят дороже, чем с традиционной.

Знаете ли вы …

что в микроволновой печи можно разогревать любое молоко без всякого ущерба для его питательных свойств? Единственное исключение - свежесцеженное грудное молоко: под воздействием микроволн оно утрачивает содержащиеся в нем компоненты, жизненно необходимые младенцу.

что иногда вращение стола лучше отменить. Это позволит готовить большие по объему блюда (лосось, индейку и т. д.), которым просто не повернуться в полости, не задев ее стенок. Воспользуйтесь функцией отмена вращения, если она имеется в вашей микроволновке.

Диапазон радиоизлучения противоположен гамма-излучению и тоже неограничен с одной стороны - со стороны длинных волн и низких частот.

Инженеры делят его на множество участков. Самые короткие радиоволны используют для беспроводной передачи данных (интернет, сотовая и спутниковая телефония); метровые, дециметровые и ультракороткие волны (УКВ) занимают местные теле- и радиостанции; короткие волны (КВ) служат для глобальной радиосвязи - они отражаются от ионосферы и могут огибать Землю; средние и длинные волны используют для регионального радиовещания. Сверхдлинные волны (СДВ) - от 1 км до тысяч километров - проникают сквозь соленую воду и применяются для связи с подводными лодками, а также для поиска полезных ископаемых.

Энергия радиоволн крайне низка, но они возбуждают слабые колебания электронов в металлической антенне. Эти колебания затем усиливаются и регистрируются.

Атмосфера пропускает радиоволны длиной от 1 мм до 30 м. Они позволяют наблюдать ядра галактик, нейтронные звезды, другие планетные системы, но самое впечатляющее достижение радиоастрономии - рекордно детальные изображения космических источников, разрешение которых превосходит десятитысячную долю угловой секунды.

Микроволны

Микроволны - это поддиапазон радиоизлучения, примыкающий к инфракрасному. Его также называют сверхвысокочастотным (СВЧ) излучением, так как у него самая большая частота в радиодиапазоне.

Микроволновый диапазон интересен астрономам, поскольку в нем регистрируется оставшееся со времен Большого взрыва реликтовое излучение (другое название - микроволновый космический фон). Оно было испущено 13,7 млрд лет назад, когда горячее вещество Вселенной стало прозрачным для собственного теплового излучения. По мере расширения Вселенной реликтовое излучение остыло и сегодня его температура составляет 2,7 К.

Реликтовое излучение приходит на Землю со всех направлений. Сегодня астрофизиков интересуют неоднородности свечения неба в микроволновом диапазоне. По ним определяют, как в ранней Вселенной начинали формироваться скопления галактик, чтобы проверить правильность космологических теорий.

А на Земле микроволны используются для таких прозаических задач, как разогрев завтрака и разговоры по мобильному телефону.

Атмосфера прозрачна для микроволн. Их можно использовать для связи со спутниками. Есть также проекты передачи энергии на расстояние с помощью СВЧ-пучков.

Источники

Обзоры неба

Небо в микроволновом диапазоне 1,9 мм (WMAP)

Космический микроволновый фон, называемый также реликтовым излучением, представляет собой остывшее свечение горячей Вселенной . Впервые оно было обнаружено А. Пензиасом и Р. Вильсоном в 1965 году (Нобелевская премия 1978 г.) Первые измерения показали, что излучение совершенно однородно по всему небу.

В 1992 году было объявлено об открытии анизотропии (неоднородности) реликтового излучения. Этот результат был получен советским спутником «Реликт-1» и подтвержден американским спутником COBE (см. Небо в инфракрасном диапазоне). COBE также определил, что спектр реликтового излучения очень близок к чернотельному . За этот результат присуждена Нобелевская премия 2006 года.

Вариации яркости реликтового излучения по небу не превышают одной сотой доли процента, но их наличие указывает на едва заметные неоднородности в распределении вещества, которые существовали на ранней стадии эволюции Вселенной и послужили зародышами галактик и их скоплений.

Однако точности данных COBE и «Реликта» было недостаточно для проверки космологических моделей, и поэтому в 2001 году был запущен новый более точный аппарат WMAP (Wilkinson Microwave Anisotropy Probe), который к 2003 году построил детальную карту распределения интенсивности реликтового излучения по небесной сфере. На основе этих данных сейчас ведется уточнение космологических моделей и представлений об эволюции галактик.

Реликтовое излучение возникло, когда возраст Вселенной составлял около 400 тысяч лет и она вследствие расширения и остывания стала прозрачна для собственного теплового излучения. Первоначально излучение имело планковский (чернотельный) спектр с температурой около 3000 K и приходилось на ближний инфракрасный и видимый диапазоны спектра.

По мере расширения Вселенной реликтовое излучение испытывало красное смещение, что приводило к снижению его температуры. На сегодня температура реликтового излучения составляет 2,7 К и оно приходится на микроволновый и дальний инфракрасный (субмиллиметровый) диапазоны спектра. На графике показан приближенный вид планковского спектра для этой температуры. Впервые спектр реликтового излучения был измерен спутником COBE (см. Небо в инфракрасном диапазоне), за что в 2006 году была присуждена Нобелевская премия.

Радионебо на волне 21 см , 1420 МГц (Dickey & Lockman)

Знаменитая спектральная линия с длиной волны 21,1 см - это еще один способ наблюдения нейтрального атомарного водорода в космосе. Линия возникает благодаря так называемому сверхтонкому расщеплению основного энергетического уровня атома водорода.

Энергия невозбужденного атома водорода зависит от взаимной ориентации спинов протона и электрона. Если они параллельны, энергия чуть выше. Такие атомы могут спонтанно переходить в состояние с антипараллельными спинами, испуская квант радиоизлучения, уносящий крохотный избыток энергии. С отдельным атомом такое случается в среднем раз в 11 млн лет. Но огромное распространение водорода во Вселенной делает возможным наблюдение газовых облаков на этой частоте.

Радионебо на волне 73,5 см , 408 МГц (Бонн)

Это самый длинноволновый из всех обзоров неба. Он был выполнен на волне, на которой в Галактике наблюдается значительное число источников. Кроме того, выбор длины волны определялся техническими причинами. Для построения обзора использовался один из крупнейших в мире полноповоротных радиотелескопов - 100-метровый боннский радиотелескоп.

Земное применение

Главное преимущество микроволновой печи - прогрев со временем продуктов по всему объему, а не только с поверхности.

Микроволновое излучение, имея большую длину волны, глубже инфракрасного проникает под поверхность продуктов. Внутри продуктов электромагнитные колебания возбуждают вращательные уровни молекул воды, движение которых в основном и вызывает нагрев пищи. Таким образом происходит микроволновая (СВЧ) сушка продуктов, размораживание, приготовление и разогрев. Также переменные электрические токи возбуждают токи высокой частоты. Эти токи могут возникать в веществах, где присутствуют подвижные заряженные частицы.

А вот острые и тонкие металлические предметы в микроволновую печь помещать нельзя (это особенно касается посуды с напыленными металлическими украшениями под серебро и золото). Даже тонкое колечко позолоты по краю тарелки может вызвать мощный электрический разряд, который повредит устройство, создающее электромагнитную волну в печи (магнетрон, клистрон).

Принцип действия сотовой телефонии основан на использовании радиоканала (в микроволновом диапазоне) для связи между абонентом и одной из базовых станций. Между базовыми станциями информация передается, как правило, по цифровым кабельным сетям.

Радиус действия базовой станции - размер соты - от нескольких десятков до нескольких тысяч метров. Он зависит от ландшафта и от мощности сигнала, которую подбирают так, чтобы в одной соте было не слишком много активных абонентов.

В стандарте GSM одна базовая станция может обеспечивать не более 8 телефонных разговоров одновременно. На массовых мероприятиях и при стихийных бедствиях количество звонящих абонентов резко увеличивается, это перегружает базовые станции и приводит к перебоям с сотовой связью. На такие случаи у сотовых операторов есть мобильные базовые станции, которые могут быть оперативно доставлены в район большого скопления народа.

Много споров вызывает вопрос о возможном вреде микроволнового излучения сотовых телефонов. Во время разговора передатчик находится в непосредственной близости от головы человека. Многократно проводившиеся исследования пока не смогли достоверно зарегистрировать негативного воздействия радиоизлучения сотовых телефонов на здоровье. Хотя полностью исключить воздействие слабого микроволнового излучения на ткани организма нельзя, оснований для серьезного беспокойства нет.

Передача телевизионного изображения ведется на метровых и дециметровых волнах. Каждый кадр разбивается на строки, вдоль которых определенным образом меняется яркость.

Передатчик телевизионной станции постоянно выдает в эфир радиосигнал строго фиксированной частоты, она называется несущей частотой. Под нее подстраивается приемный контур телевизора - в нем на нужной частоте возникает резонанс, позволяющий уловить слабые электромагнитные колебания. Информация об изображении передается амплитудой колебаний: большая амплитуда - высокая яркость, низкая амплитуда - темный участок изображения. Этот принцип называется амплитудной модуляцией. Аналогичным образом передается звук радиостанциями (кроме FM-станций).

С переходом к цифровому телевидению правила кодирования изображения меняются, но сам принцип несущей частоты и ее модуляции сохраняется.

Параболическая антенна для приема сигнала с геостационарного спутника в микроволновом и УКВ-диапазонах. Принцип действия такой же, как у радиотелескопа , но тарелку не требуется делать подвижной. В момент монтажа ее направляют на спутник, который всегда остается на одном месте относительно земных сооружений.

Это достигается за счет вывода спутника на геостационарную орбиту высотой около 36 тыс. км над экватором Земли. Период обращения по этой орбите в точности равен периоду вращения Земли вокруг своей оси относительно звезд - 23 часа 56 минут 4 секунды. Размер тарелки зависит от мощности спутникового передатчика и его диаграммы направленности. У каждого спутника есть основной район обслуживания, где его сигналы принимаются тарелкой диаметром 50–100 см , и периферийная зона, где сигнал быстро слабеет и для его приема может потребоваться антенна до 2–3 м .

Что такое Воздействие сверхвысокочастотного электромагнитного поля

Сверхвысокочастотный (СВЧ) диапазон радиоволн включает деци-, санти- и миллиметровые волны с частотой колебаний соответственно 0,3-3000 МГц, 3-30 000 МГц и 30-300 000 МГц. Биологическое действие радиоволн всех диапазонов качественно сходно, но с увеличением частоты колебаний его эффект возрастает.

Патогенез (что происходит?) во время Воздействия сверхвысокачастотного электромагнитного поля

В патогенезе нарушений ведущая роль принадлежит нервной системе, что связано как с прямым действием СВЧ-поля на ее отделы, так и с рефлекторными влияниями через рецепторные поля. В качестве механизма действия предполагаются нарушения синаптической передачи возбуждения.

Гигиеническими нормами предусмотрена предельная интенсивность СВЧ-поля на рабочих местах в пределах 10-100 мкВт на 1 см2 в секунду при длительном воздействии поля (от 2 до 8 ч в сутки). В случае некоторого превышения этих норм отмечается так называемое нетепловое (специфическое) действие СВЧ-поля с развитием в организме в основном функциональных изменений, однако склонных к кумуляции при повторных воздействиях СВЧ-поля. Облучение большой интенсивности, начиная с 10 мкВт на 1 см? в секунду, дает уже «тепловой» эффект и в результате этого приводит к перегреванию с развитием структурных изменений, особенно в нервной системе, эндокринных железах, хрусталике глаза. Обратимые изменения в этих органах возможны при интенсивности СВЧ-поля 10-7-5 мкВт/см2 в секунду.

СВЧ-поле возникает при работе электронных радиотехнических устройств, например радиолокационных станций (РЛС). Обслуживанием излучающей аппаратуры занято большое число людей, которые могут при нарушении правил техники безопасности подвергаться облучению СВЧ-полем. Под облучение могут попадать и лица, не связанные с работой на РЛС. Это происходит в связи с тем, что мощность современных РЛС весьма велика и излучение может распространяться на значительное расстояние.

Биологический эффект СВЧ-поля зависит от интенсивности, времени воздействия, длины волны, облучаемого органа, исходного функционального состояния организма. При этом наряду с тепловым действием, когда под влиянием облучения в органах и тканях регистрируется повышение температуры тела, различают и нетепловое, при котором регистрируемо го повышения температуры не отмечается, однако физиологические сдвиги в организме имеются.

Клинически тепловое действие проявляется в двигательном беспокойстве, повышении температуры тела, одышке, учащении пульса, повышении артериального давления, усилении саливации и др.

Под влиянием СВЧ-поля малой интенсивности (нетепловой), не превышающей установленных предельно допустимых уровней облучения (не более 10 мкВт/см? в течен ие рабочего дня, 100 мкВт/см? в течение 2 ч и 1000 мкВт/см? в течение 15-20 мин с применением защитных очков), наступают функциональные изменения нервной системы различной степени выраженности. При повторных многократных воздействиях может наблюдаться накапливание эффекта.

Симптомы Воздействия сверхвысокачастотного электромагнитного поля

Неврологические расстройства выражаются в повышенной утомляемости, понижении работоспособности, головной боли, головокружении, расстройствах сна (сонливость, бессонница, неспокойный сон со сновидениями), раздражительности, общей слабости, повышенной потливости, приливах к голове, иногда ослаблении памяти. При особенно значительных воздействиях иногда отмечаются тремор, обморочные состояния, страхи, галлюцинации.

Наряду с указанными изменениями наблюдаются сердечно-сосудистые расстройства по типу нейроциркуляторной дистонии: боли в области сердца, одышка, особенно при физической нагрузке, сердцебиения, «замирание» сердца. Объективно отмечаются гипотензия, приглушение тонов сердца, иногда систолический шум на верхушке.

При несистематических, слабых по интенсивности облучениях синдром СВЧ-воздействия может вначале проявляться исподволь: возникают легкое недомогание, утомляемость, чаще к концу рабочего дня, иногда присоединяются одышка при физической нагрузке, неприятные ощущения в области сердца. По степени выраженности симптомов хронического СВЧ-воздействия в его течении можно выделить три стадии.

В первой стадии отчетливые явления астении и нейроциркуляторной дистонии отсутствуют, но имеются отдельные жалобы; с прекращением облучения все эти изменения сравнительно быстро проходят.

Вторая стадия характеризуется достаточно отчетливыми, более стойкими расстройствами, которые также обратимы.

Третья стадия встречается исключительно редко: могут наблюдаться галлюцинации, страхи, обмороки, адинамия, нарушения чувствительности по периферическому типу, симптомы коронарной недостаточности.

Диагностика Воздействия сверхвысокачастотного электромагнитного поля

При диагностике хронического СВЧ-воздействия встречаются весьма значительные затруднения. Диагноз может быть установлен в случаях, когда проявления астенического состояния и нейроциркуляторной дистонии, характерные для СВЧ-воздействия, имеют прямое или косвенное отношение к облучениям СВЧ-полем. При этом интенсивность облучения, как правило, превышает предельно допустимые уровни.

Лечение Воздействия сверхвысокачастотного электромагнитного поля

Первоочередным мероприятием является исключение дальнейшего облучения. В качестве лечебных могут быть рекомендованы общеукрепляюшие и симптоматические средства. В первой стадии развития проявлений назначается амбулаторное лечение: 1-2 % раствор бромида натрия внутрь в индивидуальной дозировке с кофеином, настойка китайского лимонника, женьшеня по 15-30 капель 2 раза в день, ежедневные внутримышечные инъекции 10 мл 10% раствора глюконата кальция (10-15 инъекций на курс).

При более выраженных нарушениях (вторая стадия) рекомендуется стационарное лечение. В дополнение к указанным средствам могут быть добавлены 20 мл 40 % раствора глюкозы с 2 мл 5 % раствора аскорбиновой кислоты (10-15 вливаний на курс). Применяют также подкожные инъекции стрихнина по 0,5-1 мл 0,1 % раствора на инъекцию, глутаминовую кислоту внутрь по 0,5-1 г 3 раза в день, снотворные: барбитал, нитразепам на ночь. Рекомендуются водные процедуры (ванны, души).

Профилактика Воздействия сверхвысокачастотного электромагнитного поля

В качестве профилактических мероприятий необходимы детальные медицинские осмотры один раз в год лиц, находящихся под СВЧ-воздействием. При этом особое внимание обращается на состояние нервной, сердечно-сосудисто й системы, крови и органа зрения. Для этого необходимо привлекать специалистов: окулиста, невролога и терапевта. Внеочередные медицинские обследования проводятся при сигналах о неблагополучии со стороны состояния здоровья врачей (например, жалобах на ухудшение самочувствия). При выявлении заболевшего в связи с СВЧ-воздействием следует опросить и других лиц, работающих в сходных условиях, при необходимости осмотреть их, а также организовать проверку мощности потока СВЧ-поля на рабочих местах.

К каким докторам следует обращаться если у Вас Воздействие сверхвысокочастотного электромагнитного поля

Невролог


Акции и специальные предложения

Медицинские новости

20.02.2019

Главные детские специалисты фтизиатры посетили 72-ю школу Санкт-Петербурга для изучения причин, по которым 11 школьников почувствовали слабость и головокружения после постановки им в понедельник, 18 февраля, пробы на туберкулез

Вирусы не только витают в воздухе, но и могут попадать на поручни, сидения и другие поверхности, при этом сохраняя свою активность. Поэтому в поездках или общественных местах желательно не только исключить общение с окружающими людьми, но и избегать...

Вернуть хорошее зрение и навсегда распрощаться с очками и контактными линзами - мечта многих людей. Сейчас её можно сделать реальностью быстро и безопасно. Новые возможности лазерной коррекции зрения открывает полностью бесконтактная методика Фемто-ЛАСИК.

Косметические препараты, предназначенные ухаживать за нашей кожей и волосами, на самом деле могут оказаться не столь безопасными, как мы думаем

Развитие техники микроволн в последние два десятилетия способствовало внедрению их в физиотерапевтическую практику. Микроволны обладают рядом физических свойств, которые могут быть использованы для лечения некоторых заболеваний (например, псориаза , ревматизма и других аутоиммунных болезней). Свойства этих волн следующие: а) энергию их можно сконцентрировать на отдельных участках тела; б) они отражаются от плотных поверхностей; в) частота их близка к частоте релаксационных колебаний воды; г) они более термогенны, чем ультракороткие волны.

Под действием микроволн в тканях живого организма возникают колебания ионов и содержащихся в них дипольных молекул воды . Поглощение в тканях энергии волн за счет колебания ионов практически не зависит от частоты, поглощение же за счет колебаний дипольных молекул воды увеличивается с увеличением частоты. Однако это увеличение происходит до определенной для каждого тела молекул частоты (так называемая релаксационная частота). При более высоких частотах молекулы вследствие инертности не успевают уже реагировать на слишком частые изменения полей волны, а потому поглощение энергии волн резко уменьшается. Для молекул воды эта предельная частота релаксации около 2-10 гц (длина волны около 1,5 см). В силу этих особенностей по мере укорочения длины волны повышается роль молекул в общем поглощении энергии волн в тканях. В 10-сантиметровом диапазоне волн за счет колебаний молекул воды поглощается примерно половина общей энергии, а в 3-сантиметровом - уже 98%. Так как организм больше чем на половину состоит из воды, то понятно значение этого факта для действия микроволн, особенно для ткани с высоким содержанием воды (кровь, лимфа, мышцы, нервная система).

Микроволны обладают как термическим, так и экстратермическим действием. Впервые экстратермическое действие их на человека установил С. Я. Турлыгин, наблюдавший появление сонливости после воздействия сантиметровыми волнами очень малой интенсивности. В дальнейшем это было подтверждено многочисленными наблюдениями. У человека при систематическом воздействии микроволнами большой мощности на лицо наблюдается помутнение хрусталика, функциональные изменения нервной системы, нарушение функции зрительного и обонятельного анализаторов и т. д., что привело к необходимости установить в промышленности предельно допустимые дозы воздействия на человека в течение рабочего времени - не более 0,01 мвт/см2.

Общее воздействие на животных интенсивным полем СВЧ при ППМ (плотности потока мощности) 0,2-0,3 вт/см21 вызывает изменение дыхания, частоты сердечных сокращений и артериального давления, местные же воздействия при тех же условиях сопровождаются быстро проходящими изменениями гемодинамики и дыхания, очевидно рефлекторного происхождения. Регулирующее значение нервной системы при воздействии поля СВЧ выступает при перерезке блуждающих нервов у животных; при этом отмечают меньшее учащение дыхания, но более тяжелое гемодинамическое нарушение в результате выключения регулирующего влияния блуждающего нерва.

У лягушки поле СВЧ при 0,3 вт/см2 вызывает изменения сердечной деятельности, сходные с двухфазным эффектом электрического поля УВЧ. В первую фазу, иногда кратковременную, наблюдается учащение и усиление сердечных сокращений, за которой следует замедление и остановка сердечной деятельности в диастоле. После прекращения воздействия сокращения восстанавливаются; иногда наблюдают аритмии. Эти эффекты рассматривают как термические ввиду применявшейся в опытах высокой ППМ поля СВЧ.

Большое физиологическое значение имеет применение небольшой интенсивности поля СВЧ (ППМ 0,05 вт/см2, продолжительность 30 минут), когда у собак обычно отмечается небольшое учащение сердечного ритма и исчезновение дыхательной аритмии, у некоторых животных появляется урежение ритма. По данным электрокардиографии, при длительных многократных воздействиях полем СВЧ можно судить о включении компенсаторных механизмов и развития адаптации, которая может быть сорвана у собак более сильными воздействиями. Установленные изменения указывают на развитие временных дистрофических процессов в миокарде и их рассматривают как рефлекторные; в течение первого часа после воздействия эти изменения исчезают. У собак с искусственно вызванным инфарктом миокарда применение поля СВЧ вызывает учащение сердечного ритма, снижение всех зубцов электрокардиограммы в каждом отведении, интервал же S-Т приподнимается еще больше над изоэлектрической линией. Поле СВЧ ухудшает функции больного сердца.

При нормализации показателей функций сердца после перенесенного экспериментального инфаркта миокарда применение поля СВЧ слабой интенсивности вызывает у животных фазовые изменения сердечной деятельности, которые можно рассматривать как дистрофические. Эти изменения наблюдаются как при общем воздействии, так и при местном на область головы. Мышечная нагрузка в сочетании со слабым полем СВЧ ведет к более стойким изменениям.

На основании электрокардиографических данных можно сделать вывод, что под влиянием поля СВЧ изменяются биохимические процессы в тканях сердца, выраженность которых зависит от интенсивности воздействия микроволнами.

Определение электролитического состава периферической крови животных методом электрофореза после воздействия интенсивным полем СВЧ (ППМ 0,1-0,2 вт/см2) свидетельствует о фазных изменениях в содержании калия и натрия. Вначале коэффициент K/Na в плазме повышается, а потом снижается. При сопоставлении с электрокардиографическими данными видно, что после воздействия при высоком содержании калия в крови во всех отведениях появляются заостренные высокие зубцы Т, а при пониженном его содержании низкие уплощенные. По изменению соотношения калия и натрия в крови можно считать, что под влиянием микроволн происходит изменение проницаемости клеточных мембран к внутри- и внеклеточным катионам.

Большой интерес для механизма действия поля СВЧ на организм представляют биохимические исследования. Изучение окислительно-восстановительных процессов в тканях (печени, почках, сердечной мышце) путем определения в них активности ферментов (цитохромоксидазы, дегидразы и аденозинтрифосфатазы) выявляет действие на организм поля СВЧ. Применение интенсивного поля СВЧ (ППМ 0,1-0,3 вт/см2) приводит к резкому снижению окислительно-восстановительных процессов в тканях кролика; при этом проявляется тепловое действие поля СВЧ. Слабое поле СВЧ (ППМ 0,005-0,01 вт/см2) вызывает заметное повышение окислительно-восстановительных процессов в тканях. Многократное воздействие на кроликов поля СВЧ приводит к меньшим сдвигам окислительно-восстановительных процессов по сравнению с однократным. Это можно объяснить тем, что повторное воздействие стимулирует компенсаторно-приспособительные механизмы, обусловливает меньшие сдвиги окислительно-восстановительных процессов в тканях животных. Влияние компенсаторных механизмов было выражено больше в центральной нервной системе, чем в сердце.

Исследование белкового обмена животных как при местном, так и при общем воздействии поля СВЧ выявило некоторые особенности. Воздействие на область сердца ежедневно в течение 10 дней (ППМ 0,02 вт/см2 при площади излучателя 10 см2) не вызывало каких-либо существенных изменений белкового обмена сердечной мышцы, при более же интенсивном воздействии (ППМ 0,1 вт/см2) наблюдали увеличение содержания белков, обладающих фосфорилазной активностью при одновременном уменьшении фракции миогена.

В мышце сердца животных отмечены значительные изменения содержания отдельных белковых фракций, которые зависели от интенсивности воздействия.

Реакцией преципитации в агаре по Ухтерлони исследовали антигенный состав сыворотки крови животных, подвергнутых общему воздействию микроволн в виде курса из 20 процедур по 10 минут ежедневно (ППМ 0,006 и 0,04 вт/см2). Сыворотку крови исследовали на 24-25-й день после последнего воздействия. Реакция преципитации в агаре показала, что общее действие микроволн (ППМ 0,006 вт/см2) не приводит к изменению антигенного состава сыворотки крови животных. Антисыворотка к сыворотке подопытных животных одинаково реагировала с сывороткой как подопытных, так и здоровых животных.

При иммунологических исследованиях сыворотки крови животных, подвергнутых общему воздействию микроволн с ППМ 0,04 вт/см2, в реакции преципитации в агаре было обнаружено меньшее количество линий преципитации, что свидетельствовало об упрощении антигенного состава сыворотки крови и укреплении иммунитета . Сыворотки против сыворотки здоровых животных по-разному реагировали с сывороткой здоровых и подопытных животных; в то же время сыворотки против сыворотки подопытных реагировали с сывороткой здоровых и подопытных животных одинаково. Полученные данные, по-видимому, свидетельствуют о том, что в сыворотке здоровых животных имеются антигены, которых нет в сыворотке животных, подвергнутых воздействию микроволн.

Упрощение антигенного состава сыворотки крови при воздействии тепловых доз микроволн свидетельствует о глубоком сдвиге в обмене веществ организма. При действии нетепловых доз микроволн подобного явления не наблюдали.

Исследование высшей нервной деятельности собак методом условных рефлексов показывает, что воздействие полем СВЧ вызывает значительные изменения, которые зависят от плотности потока мощности, продолжительности воздействия и типологических особенностей животного. Изменение функционального состояния коры больших полушарий головного мозга у собак наблюдали уже при однократном воздействии слабым полем СВЧ (ППМ 0,005-0,01 вт/см2). Поскольку такая мощность поля не вызывала повышения температуры тела, наблюдаемый эффект не был связан с перегреванием. Слабое поле СВЧ усиливало процесс возбуждения, а сильное, при котором наблюдали одышку, перегрев, вело к развитию торможения в центральной нервной системе.

Усиление как условных, так и безусловных рефлексов указывает, что поле СВЧ действует как на кору головного мозга, так и на подкорковые образования. При длительном воздействии слабого поля СВЧ наблюдаются фазные изменения высшей нервной деятельности: сначала усиление процесса возбуждения, а затем ослабление его до исходного уровня с усилением торможения.

Изучение злектроэнцефалографических показателей у животных при общем воздействии выявило зависимость между характером биоэлектрической активности головного мозга и интенсивностью воздействия поля СВЧ. Интенсивные и длительные воздействия вызывали изменения основных ритмов электрической активности, а также амплитуды. При воздействии на голову животного эти изменения выступали при слабых воздействиях поля СВЧ.

В настоящее время ученые пытаются лечить микроволновыми волнами злокачественные образования, что, возможно, наконец позволит создать уникальное средство лечение рака груди . Однако, пока все находится в стадии экспериментов над животными.