Карликовая галактика породила молодые звезды после встречи с черным глазом. Звезды — карлики Галактики (8 фото)




Международная группа астрономов, среди которых был Игорь Караченцев из Специальной астрофизической обсерватории РАН, изучила карликовую галактику KDG215 и обнаружила, что основная часть звезд в ней сформировалась за последний миллиард лет, в то время как в большинстве известных галактик пик звездообразования случился десяток миллиардов лет назад. KDG215 - одна из самых «молодых» по своему составу галактик, что указывает не необычность процессов ее эволюции. Соответствующая статья направлена на публикацию в Astrophysical Journal Letters , а пока что с текстом работы можно ознакомиться на сервере препринтов Корнелльского университета.

Детали того, как именно галактики начинают быстро и в больших количествах образовывать звезды, остаются не вполне ясными. Ситуация осложнена тем, что интенсивнее всего галактики «рожали» новые звезды 10 миллиардов лет назад, а сегодня этот процесс идет намного медленнее. Особенно сложная ситуация - для карликовых галактик, которые удалены от земных наблюдателей и зачастую довольно тусклы.

Астрономы изучили карликовую галактику KDG215 в 4,83 мегапарсека от нас (примерно 15,7 миллиона световых лет). Она, с одной стороны, сравнительно близка и потому удобна для наблюдения, а с другой - обладает рядом крайне необычных черт, которые позволяли ученым надеяться и на необычные результаты при ее исследовании. KDG215 крайне тусклая - это одна из самых тусклых галактик на таком удалении, а текущая скорость образования новых звезд в ней равна нулю.

Исследователи попытались проследить эволюцию звездообразования в этой галактике, обратившись к архиву снимков космического телескопа «Хаббл». Для этого они проанализировали спектры излучения галактики и выяснили, каков возраст основной популяции звезд в ней. Оказалось, что его средние значения экстремально низки: по расчетам, около миллиарда лет назад в галактике произошел резкий всплеск звездообразования. По самым консервативным оценкам, всего 1,25 миллиарда лет назад 30 процентов всех звезд в KDG215 еще не существовало, тогда как в остальных известных галактиках в это же время существовало уже не менее 90 процентов звезд. Более того, по менее консервативной оценке результатов расчетов, 1,25 миллиарда лет назад не существовало 66 процентов всех звезд галактики KDG215. Это делает ее экстремально молодой в плане среднего возраста ее звездного населения: хотя авторы и проводят параллели с парой других карликовых галактик, однако и там не менее половины всех звезд образовалось уже 4-7 миллиардов лет назад, а вовсе не в последний миллиард лет, как, возможно, обстоит дело в KDG215.

Исследователи взяли соседние с KDG215 галактики в кубе со стороной в шесть мегапарсеков (порядка 20 миллионов световых лет) и обнаружили, что не более нескольких миллиардов лет назад она могла пройти весьма близко к галактике Черный глаз (M64).

Это достаточно необычный объект, состоящий из двух слившихся галактик, причем периферия ее вращается в одну сторону, а газопылевой диск в центре галактики - в другую. Как отмечают исследователи, столкновение с газом из M64 могло привести к резкому повышению плотности облаков водорода в KDG215 и, соответственно, вспышке звездообразования. Дальнейшее изучение этого объекта способно прояснить детали процессов массового образования новых звезд в галактиках.

Относительно яркие и массивные светила довольно просто увидеть невооруженным глазом, но в Галактике куда больше карликовых звезд, которые видны только в мощные телескопы, даже если расположены вблизи от Солнечной системы. Среди них есть как скромные долгожители — красные карлики, так и недотянувшие до полноценного звездного статуса коричневые и отошедшие на покой белые карлики, постепенно превращающиеся в черные.

Судьба звезды целиком зависит от размера, а точнее от массы. Чтобы лучше представить себе массу звезды, можно привести такой пример. Если положить на одну чашу весов 333 тысячи земных шаров, а на другую — Солнце, то они уравновесят друг друга. В мире звезд наше Солнце — середнячок. Оно в 100 раз уступает по массе самым крупным звездам и раз в 20 превосходит самые легкие. Казалось бы, диапазон невелик: приблизительно как от кита (15 тонн) до кота (4 килограмма). Но звезды — не млекопитающие, их физические свойства гораздо сильнее зависят от массы. Сравнить хотя бы температуру: у кита и кота она почти одинаковая, а у звезд различается в десятки раз: от 2000 Кельвинов у карликов до 50 000 у массивных звезд. Еще сильнее — в миллиарды раз различается мощность их излучения. Именно поэтому на небе мы легко замечаем далекие гигантские звезды, а карликов не видим даже в окрестностях Солнца.

Но когда были проведены аккуратные подсчеты, выяснилось, что распространенность гигантов и карликов в Галактике сильно напоминает ситуацию с китами и котами на Земле. В биосфере есть правило: чем мельче организм, тем больше его особей в природе. Оказывается, это справедливо и для звезд, но объяснить эту аналогию не так-то просто. В живой природе действуют пищевые цепи: крупные поедают мелких. Если бы лис в лесу стало больше, чем зайцев, то чем бы питались эти лисы? Однако звезды, как правило, не едят друг друга. Тогда почему же гигантских звезд меньше, чем карликов? Половину ответа на этот вопрос астрономы уже знают. Дело в том, что жизнь массивной звезды в тысячи рад короче, чем карликовой. Чтобы удержать собственное тело от гравитационного коллапса, звездам-тяжеловесам приходится раскаляться до высокой температуры — сотен миллионов градусов в центре. Термоядерные реакции идут в них очень интенсивно, что приводит к колоссальной мощности излучения и быстрому сгоранию «топлива». Массивная звезда растрачивает всю энергию за несколько миллионов лет, а экономные карлики, медленно тлея, растягивают свой термоядерный век на десятки и более миллиардов лет. Так что, когда бы ни родился карлик, он здравствует до сих пор, ведь возраст Галактики всего около 13 миллиардов лет, А вот массивные звезды, появившиеся на свет более 10 миллионов лет назад, давно уже погибли.

Однако это лишь половина ответа на вопрос, почему гиганты встречаются в космосе так редко. А вторая половина состоит в том, что массивные звезды рождаются намного реже, чем карликовые. На сотню новорожденных звезд типа нашего Солнца появляется лишь одна звезда с массой раз в 10 больше, чем у Солнца. Причину этой «экологической закономерности» астрофизики пока не разгадали.

До недавних пор и классификации астрономических объектов зияла большая дыра: самые маленькие известные звезды были раз в 10 легче Солнца, а самая массивная планета — Юпитер — в 1000 раз. Существуют ли в природе промежуточные объекты — не звезды и не планеты с массой от 1/1000 до 1/10 солнечной? Как должно выглядеть это «недостающее звено»? Можно ли его обнаружить? Эти вопросы давно волновали астрономов, но ответ стал намечаться лишь в середине 1990-х годон, когда программы поиска планет за пределами Солнечной системы принесли первые плоды. На орбитах вокруг нескольких солнцеподобных звезд обнаружились планеты-гиганты, причем все они оказались массивнее Юпитера. Промежуток по массе между звездами и планетами стал сокращаться. Но возможна ли смычка, и где пронести границу между звездой и планетой?

Еще недавно казалось, что это совсем просто: звезда светит собственным светом, а планета — отраженным. Поэтому в категорию планет попадают те объекты, в недрах которых за все время существованиям не протекают реакции термоядерного синтеза. Если же на некотором этапе эволюции их мощность была сравнима со светимостью (то есть термоядерные реакции служили главным источником энергии), то такой объект достоин называться звездой. Но оказалось, что могут существовать промежуточные объекты, в которых термоядерные реакции происходят, но никогда не служат основным источником энергии. Их обнаружили в 1996 году, но еще задолго до того они получили название коричневых карликов. Открытию этих странных объектов предшествовал тридцатилетний поиск, начавшийся с замечательного теоретического предсказания.

В 1963 году молодой американский астрофизик индийского происхождения Шив Кумар рассчитал модели самых мало массивных звезд и выяснил, что если масса космического тела превосходит 7,5% солнечной, то температура в его ядре достигает нескольких миллионов градусов и R нем начинаются термоядерные реакции превращения водорода в гелий. При меньшей массе сжатие останавливается раньше, чем температура в центре достигает значения, необходимого для протекания реакции синтеза гелия. С тех пор это критическое значение массы называют «границей возгорания водорода», или пределом Кумара. Чем ближе звезда к этому, пределу, тем медленнее идут в ней ядерные реакции. Например, при массе 8% солнечной звезда будет «тлеть» около 6 триллионов лет — в 400 раз больше современного возраста Вселенной! Так что, в какую бы эпоху ни родились такие звезды, все они еще находятся в младенческом возрасте.

Впрочем и в жизни менее массивных объектов бывает краткий эпизод, когда они напоминают нормальную звезду. Речь идет о телах с массами от 1% до 7% массы Солнца, то есть от 13 до 75 масс Юпитера. В период формирования, сжимаясь под действием гравитации, они разогреваются и начинают светиться инфракрасным и даже чуть-чуть красным — видимым светом. Температура их поверхности может подняться до 2500 Кельвинов, а в недрах превысить 1 миллион кельвинов. Этого хватает, чтобы началась реакция термоядерного синтеза гелия, но только не из обычного водорода, а из очень редкого тяжелого изотопа — дейтерия, и не обычного гелия, а легкого изотопа гелия-3. Поскольку дейтерия в космическом веществе очень мало, весь он быстро сгорает, не давая существенного выхода энергии. Это все равно, что бросить в остывающий костер лист бумаги: сгорит моментально, но тепла не даст. Разогреться сильнее «мертворожденная» звезда не может — ее сжатие останавливается под действием внутреннего давления вырожденного газа. Лишенная источников тепла, она в дальнейшем лишь остывает, как обычная планета. Поэтому заметить эти неудавшиеся звезды можно только в период их недолгой молодости, пока они теплые. Выйти на стационарный режим термоядерного горения им не суждено.

Открытие «мертворожденных» звезд

Физики уверены: что не запрещено законами сохранения, то разрешено. Астрономы добавляют к этому; природа богаче нашего воображения. Если Шив Кумар смог придумать коричневые карлики, то природе, казалось бы, не составит труда их создать. Три десятилетия продолжались безрезультатные поиски этих тусклых светил. В работу включались все новые и новые исследователи. Даже теоретик Кумар прильнул к телескопу в надежде найти объекты, открытые им на бумаге. Его идея была проста: обнаружить одиночный коричневый карлик очень сложно, поскольку нужно не только зафиксировать его излучение, но и доказать, что это не далекая гигантская звезда с холодной (по звездным меркам) атмосферой или даже окруженная пылью галактика на краю Вселенной. Самое трудное в астрономии – определить расстояние до объекта. Поэтому нужно искать карлики рядом с нормальными звездами, расстояния до которых уже известны. Но яркая звезда ослепит телескоп и не позволит раз-глядеть тусклый карлик. Следовательно, искать их надо рядом с другими карликами! Например с красными — звездами предельно малой массы или же белыми — остывающими остатками нормальных звезд. В 1980-х годах поиски Кумара и других астрономов не принесли результата. Хотя не раз появлялись сообщения об открытии коричневых карликов, но детальное исследование каждый раз показывало, что это — маленькие звезды. Однако идея поиска была правильная и спустя десятилетие она сработала.

В 1990-е годы у астрономов появились новые чувствительные приемники излучения — ПЗС-матрицы и крупные телескопы диаметром до 10 метров с адаптивной оптикой, которая компенсирует вносимые атмосферой искажения и позволяет с поверхности Земли получать почти такие же четкие изображения, как из космоса. Это сразу же принесло плоды: были обнаружены предельно тусклые красные карлики, буквально пограничные с коричневыми.

А первого коричневого карлика отыскала в 1995 году группам астрономов под руководством Рафаэля Реболо из Института астрофизики на Канарских островах. С помощью телескопа на острове Ла-Пальма они нашли в звездном скоплении Плеяды объект, который назвали Teide Pleiades 1, позаимствовав название у вулкана Пико-де-Тейде на острове Тенерифе. Правда, некоторые сомнения в природе этого объекта оставались, и пока испанские астрономы доказывали, что это действительно коричневый карлик, в том же году о своем открытии заявили их американские коллеги. Группа под руководством Тадаши Накаджима из Калифорнийского технологического института с помощью телескопов Паломарской обсерватории обнаружила на расстоянии 19 световых лет от Земли в созвездии Зайца, рядом с очень маленькой и холодной звездой Глизе 229, еще более мелкий и холодный ее спутник Глизе 229В. Температура его поверхности — всего 1000 К, а мощность излучения в 160 тысяч раз ниже солнечной.

Незвездная природа Глизе 229В окончательно подтвердилась в 1997 году так называемым литиевым тестом. В нормальных звездах небольшое количество лития, сохранившегося с эпохи рождения Вселенной, быстро сгорает в термоядерных реакциях. Однако коричневые карлики для этого недостаточно горячи. Когда в атмосфере Глизе 229В был обнаружен литий, этот объект стал первым «несомненным» коричневым карликом. По размерам он почти совпадает с Юпитером, а его масса оценивается в 3- 6% массы Солнца. Он обращается вокруг своего более массивного компаньона Глизе 229А по орбите радиусом около 40 астрономических единиц (как Плутон вокруг Солнца).

Очень быстро выяснилось, что для поиска «несостоявшихся звезд» годятся и не самые крупные телескопы. Первых одиночных коричневых карликов открыли на рядовом телескопе в ходе планомерных обзоров неба. Например, объект Kelu-1 в созвездии Гидры обнаружен в рамках долгосрочной программы поиска карликовых звезд в окрестностях Солнца, которая началась на Европейской Южной обсерватории в Чили еще в 1987 году. При помощи 1-метрового телескопа системы Шмидта астроном Чилийского университета Мария Тереза Руиз уже много лет регулярно фотографирует некоторые участки неба, а затем сравнивает снимки, полученные с интервалом в годы. Среди сотен тысяч слабых звезд она ищет те, которые заметно смещаются относительно других — это безошибочный признак близких светил. Таким способом Мария Руиз открыла уже десятки белых карликов, а в 1997 году ей наконец попался коричневый. Его тип определили по спектру, в котором оказались линии лития и метана. Мария Руиз назвала его Kelu-1: на языке народа мапуче, населявшего некогда центральную часть Чили, «келу» означает красный. Он расположен на расстоянии около 30 световых лет от Солнца и не связан ни с одной звездой.

Все эти находки, сделанные в 1995-1997 годах, и стали прототипами нового класса астрономических объектов, который занял место между звездами и планетами. Как это обычно бывает в астрономии, за первыми открытиями сразу последовали новые. В последние годы множество карликов обнаружено в ходе рутинных инфракрасных обзоров неба 2MASS и DENIS.

Звездная пыль

Уже вскоре после открытия бурые карлики заставили астрономов внести коррективы в устоявшуюся десятки лет назад спектральную классификацию звезд. Оптический спектр звезды — это ее лицо, а точнее — паспорт. Положение и интенсивность линий в спектре прежде всего говорят о температуре поверхности, а также о других параметрах, в частности химическом составе, плотности газа в атмосфере, напряженности магнитного поля и т. п. Около 100 лет назад астрономы разработали классификацию звездных спектров, обозначив каждый класс буквой латинского алфавита. Их порядок многократно пересматривали, переставляя, убирая и добавляя буквы, пока не сложилась общепринятая схема, безупречно служившая астрономам многие десятки лет. В традиционном виде последовательность спектральных классов выглядит так: O-B-A-F-G-K-M. Температура поверхности звезд от класса О до класса М убывает со 100 000 до 2000 К. Английские студенты-астрономы даже придумали мнемоническое правило для запоминания порядка следования букв «Oh! Be A Fine Girl, Kiss Me!» И вот на рубеже веков этот классический ряд пришлось удлинить сразу на две буквы. Оказалось, что в формировании спектров экстремально холодных звезд и субзвезд весьма важную роль играет пыль.

На поверхности большинства звезд из-за высокой температуры никакие молекулы существовать не могут. Однако у самых холодных звезд класса М (с температурой ниже 3000 К) в спектрах видны мощные полосы поглощения окисей титана и ванадия (TiO, VO). Естественно, ожидалось, что у еще более холодных коричневых карликов эти молекулярные линии будут еще сильнее. Все в том же 1997 году у белого карлика GD 165 был открыт коричневый компаньон GD 165В, с температурой поверхности 1900 К и светимостью 0,01% солнечной. Он поразил исследователей тем, что в отличие от других холодных звезд не имеет полос поглощения TiO и VO, за что был прозван «странной звездой». Такими же оказались спектры и других коричневых карликов с температурой ниже 2000 К. Как показали расчеты, молекулы TiO и VO в их атмосферах конденсируются в твердые частицы — пылинки, и уже не проявляют себя в спектре, как это свойственно молекулам газа.

Чтобы учесть эту особенность, Дэви Киркпатрик из Калифорнийского технологического института уже на следу-ющий год предложил расширить традиционную спектральную классификацию, добавив в нее класс L для мало-массивных инфракрасных звезд, с температурой поверхности 1500-2000 К. Большинство объектов L-класса должны быть коричневыми карликами, хотя очень старые маломассивные звезды тоже могут остыть ниже 2000 К.

Продолжая исследования L-карликов, астрономы обнаружили еще более экзотические объекты. В их спектрах видны мощные полосы поглощения воды, метана и молекулярного водорода, поэтому их называют «метановыми карликами». Прототипом этого класса считается первый открытый бурый карлик Глизе 229В. В 2000 году Джеймс Либерт с коллегами из Аризонского университета выделили в самостоятельную группу Т-карлики с температурой 1500-1000 К и даже чуть ниже.

Коричневые карлики ставят перед астрономами много сложных и очень интересных вопросов. Чем холоднее атмосфера звезды, тем труднее изучать ее как наблюдателям, так и теоретикам. Присутствие пыли делает эту задачу еще сложнее: конденсация твердых частиц не только изменяет состав свободных химических элементов в атмосфере, но и влияет на теплообмен и форму спектра. В частности, теоретические модели с учетом пыли предсказали парниковый эффект в верхних слоях атмосферы, что подтверждается наблюдениями. Вдобавок расчеты показывают, что после конденсации пылинки начинают тонуть. Возможно, на разных уровнях в атмосфере формируются плотные облака пыли. Метеорология коричневых карликов может оказаться не менее разнообразной, чем у планет-гигантов. Но если атмосферы Юпитера и Сатурна можно изучать вблизи, то расшифровывать метано-вые циклоны и пылевые бури коричневых карликов придется только по их спектрам.

Секреты «ПОЛУКРОВОК»

Вопросы о происхождении и численности коричневых карликов пока остаются открытыми. Первые подсчеты их количества в молодых звездных скоплениях типа Плеяд показывают, что по сравнению с нормальными звездами общая масса коричневых карликов, видимо, не так велика, чтобы «списать» на них всю скрытую массу Галактики. Но этот вывод еще нуждается в проверке. Общепринятая теория происхождения звезд не дает ответа и на вопрос, как образуются коричневые карлики. Объекты столь малой массы могли бы формироваться подобно планетам-гигантам в околознездных дисках. Но обнаружено довольно много одиночных коричневых карликов, и трудно предположить, что все они вскоре после рождения были потеряны своими более массивными компаньонами. К тому же совсем недавно на орбите вокруг одного из коричневых карликов открыли планету, а значит, он не подвергался сильному гравитационному влиянию соседей, иначе карлик бы ее потерял.

Совершенно особый путь рождения коричневых карликов наметился недавно при исследовании двух тесных двойных систем — LL Андромеды и EF Эридана. В них более массивный компаньон, белый карлик, своей гравитацией стягивает вещество с менее массивного спутника, так называемой звезды-до нора. Расчеты показывают, что первоначально в этих системах спутники-доноры были обычными звездами, но за несколько миллиардов лет их масса упала ниже предельного значения и термоядерные реакции в них угасли. Теперь по внешним признакам это типичные коричневые карлики.

Температура звезды-донора в системе LL Андромеды около 1300 К, а в системе EF Эридана — около 1650 К. По массе они лишь в несколько десятков раз превосходят Юпитер, а в их спектрах видны линии метана. Насколько их внутренняя структура и химический состав сходны с аналогичными параметрами «настоящих» коричневых карликов, пока неизвестно. Таким образом, нормальная маломассивная звезда, потеряв значительную долю своего вещества, может стать коричневым карликом. Правы были астрономы, утверждая, что природа изобретательнее нашей фантазии. Коричневые карлики, эти «не звезды и не планеты», уже начали преподносить сюрпризы. Как выяснилось недавно, несмотря на свой холодный характер, некоторые из них являются источниками радио- и даже рентгеновского (!) излучения. Так что в будущем этот новый тип космических объектов обещает нам немало интересных открытий.

Вырожденные звезды

Обычно в период формирования звезды ее гравитационное сжатие продолжается до тех пор, пока плотность и температура в центре не достигнут значений, необходимых для запуска термоядерных реакций, и тогда за счет выделения ядерной энергии давление газа уравновешивает его собственное гравитационное притяжение. У массивных звезд температура выше и реакции начинаются при относительно не-большой плотности вещества, но чем меньше масса, тем выше оказывается «плотность зажигания». Например, в центре Солнца плазма сжата до 150 граммов на кубический сантиметр.

Однако при плотности, еще в сотни раз большей, вещество начинает сопротивляться давлению независимо от роста температуры, и в итоге сжатие звезды прекращается прежде, чем выход энергии в термоядерных реакциях становится значимым. Причиной остановки сжатия служит квантово-механический эффект, который физики называют давлением вырожденного электронного газа. Дело в том, что электроны относятся к тому типу частиц, который подчиняется так называемому «принципу Паули», установленному физиком Вольфгангом Паули в 1925 году. Этот принцип утверждает, что тождественные частицы, например электроны, не могут одновременно находиться в одном и том же состоянии. Именно поэтому в атоме элек-троны движутся по разным орбитам. В недрах звезды нет атомов: при большой плотно-сти они раздавлены и существует единое «электронное море». Для него принцип Паули звучит так: расположенные рядом электроны не могут иметь одинаковые скорости.

Если один электрон покоится, другой должен двигаться, а третий - двигаться еще быстрее, и т. д. Такое состояние электронного газа физики называют вырождением. Даже если небольшая звезда сожгла все термоядерное топливо и лишилась источника энергии, ее сжатие может быть остановлено давлением вырожденного электронного газа. Как бы сильно ни охладилось вещество, при высокой плотности движение электронов не прекратится, а значит, давление вещества будет противостоять сжатию независимо от температуры: чем больше плотность, тем выше давление.

Сжатие умирающей звезды с массой, равной солнечной, остановится, когда она уменьшится примерно до размера Земли, то есть в 100 раз, а плотность ее вещества станет в миллион раз выше плотности воды. Так образуются белые карлики. Звезда меньшей массы прекращает сжатие при меньшей плотности, поскольку сила ее тяготения не так велика. Очень маленькая звезда-неудачник может стать вырожденной и прекратить сжатие еще до того, как в ее недрах температура поднимется до порога «термо-ядерного зажигания». Такому телу никогда не стать настоящей звездой.

Которые занимают пограничное положение между карликовыми и нормальными галактиками, первые карликовые галактики были обнаружены Х. Шепли в конце 1930-х годов , при проведении обзора неба в окрестности Южного полюса мира для статистического исследования галактик на обсерватории Гарвардского университета в Южной Африке. Сначала Шепли обнаружил неизвестное ранее скопление звезд в созвездии Скульптор , содержащее около 10 тыс. звезд 18-19,5 m . Вскоре было обнаружено подобное скопление в созвездии Печь . После того, как для исследования этих скоплений задействовали 2,5 м телескоп обсерватории Маунт-Вилсон , в них удалось найти цефеиды и определить расстояния. Оказалось, что оба неизвестных скопления расположены вне пределов нашей галактики , то есть представляют собой новый тип галактик низкой поверхностной яркости.

Открытия карликовых галактик стали массовыми после того как в 1950-х годах был выполнен паломарский обзор неба с помощью 120-сантиметр камеры Шмидта на обсерватории Маунт-Паломар . Оказалось, что карликовые галактики - это самые распространённые галактики во Вселенной.

Образование карликовых галактик

Местные карлики

Морфология

Существует несколько основных типов карликовых галактик:

  • Карликовая эллиптическая галактика (dE ) - похожа на эллиптические галактики
    • Карликовая сфероидальная галактика (dSph ) - подтип dE , отличающийся особенно низкой поверхностной яркостью
  • Карликовая неправильная галактика (dIr ) - подобна неправильным галактикам , имеет клочковатую структуру
  • Карликовая голубая компактная галактика (dBCG или BCD ) - имеет признаки активного звездообразования
  • Ультракомпактные карликовые галактики (UCD ) - класс очень компактных галактик, содержащих порядка 10 8 звёзд при характерном поперечном размере около 50 пк . Предположительно, эти галактики являются плотными остатками (ядрами) карликовых эллиптических галактик, пролетевших сквозь центральные части богатых скоплений галактик . Ультракомпактные галактики были обнаружены в скоплениях галактик в Деве, Печи, Волосах Вероники, Абель 1689 и др.
  • Карликовая спиральная галактика - аналог спиральных галактик , но, в отличие от нормальных галактик, встречается чрезвычайно редко

Галактики-хоббиты

Недавно придуманный термин Галактики-хоббиты было решено использовать для обозначения галактик, которые меньше и тусклее чем карликовые галактики.

Проблема нехватки карликовых галактик

Подробное исследование таких галактик и особенно относительных скоростей отдельных звезд в них, позволила астрономам предположить, что мощное ультрафиолетовое излучение гигантских молодых звезд в своё время "выдуло" из таких галактик большую часть газа (поэтому там мало звезд), но оставило тёмную материю, которая именно поэтому сейчас преобладает. Некоторые из подобных тусклых карликовых галактик с подавляющим преобладанием тёмной материи астрономы предлагают искать непрямыми наблюдениями: по "кильватерному следу" в межгалактическом газе, т.е. по притяжению струй газа к этой "невидимой" галактике.

Неполный список карликовых галактик

См. также

Напишите отзыв о статье "Карликовая галактика"

Примечания

  1. Linda S. Sparke, John S. Gallagher III. Galaxies in the Universe: An Introduction. - 2-е изд. - Cambridge University Press, 2007. - P. 410. - 442 p. - ISBN 978-0-521-85593-8 .
  2. Засов, А. В. Карликовые галактики (Новое в жизни, науке, технике). - М .: Знание , 1984. - 64 с. - (Космонавтика, астрономия).
  3. Shapley, Harlow . Two Stellar Systems of a New Kind // Nature. - 1938. - Т. 142 . - С. 715-716 .
  4. Астрономия: век XXI / Ред.-сост. В.Г. Сурдин . - 2-е изд. - Фрязино: Век 2, 2008. - С. 373. - ISBN 978-5-85099-181-4 .
  5. arXiv :astro-ph/0307362 Galaxies and Overmerging: What Does it Take to Destroy a Satellite Galaxy? 21 июля 2003
  6. arXiv :astro-ph/0406613 Ultra Compact Dwarf galaxies in Abell 1689: a photometric study with the ACS. 28 июня 2004
  7. SPACE.com
  8. Simon, J. D. and Geha, M. (Nov 2007). «The Kinematics of the Ultra-faint Milky Way Satellites: Solving the Missing Satellite Problem». The Astrophysical Journal 670 (1): 313–331. arXiv :0706.0516 . DOI :10.1086/521816 . Bibcode : .
  9. 27 сентября 2007.
  10. 17 января 2011.

Отрывок, характеризующий Карликовая галактика

Лошадей подали.
– Bonjour, messieurs, [Здесь: прощайте, господа.] – сказал Долохов.
Петя хотел сказать bonsoir [добрый вечер] и не мог договорить слова. Офицеры что то шепотом говорили между собою. Долохов долго садился на лошадь, которая не стояла; потом шагом поехал из ворот. Петя ехал подле него, желая и не смея оглянуться, чтоб увидать, бегут или не бегут за ними французы.
Выехав на дорогу, Долохов поехал не назад в поле, а вдоль по деревне. В одном месте он остановился, прислушиваясь.
– Слышишь? – сказал он.
Петя узнал звуки русских голосов, увидал у костров темные фигуры русских пленных. Спустившись вниз к мосту, Петя с Долоховым проехали часового, который, ни слова не сказав, мрачно ходил по мосту, и выехали в лощину, где дожидались казаки.
– Ну, теперь прощай. Скажи Денисову, что на заре, по первому выстрелу, – сказал Долохов и хотел ехать, но Петя схватился за него рукою.
– Нет! – вскрикнул он, – вы такой герой. Ах, как хорошо! Как отлично! Как я вас люблю.
– Хорошо, хорошо, – сказал Долохов, но Петя не отпускал его, и в темноте Долохов рассмотрел, что Петя нагибался к нему. Он хотел поцеловаться. Долохов поцеловал его, засмеялся и, повернув лошадь, скрылся в темноте.

Х
Вернувшись к караулке, Петя застал Денисова в сенях. Денисов в волнении, беспокойстве и досаде на себя, что отпустил Петю, ожидал его.
– Слава богу! – крикнул он. – Ну, слава богу! – повторял он, слушая восторженный рассказ Пети. – И чег"т тебя возьми, из за тебя не спал! – проговорил Денисов. – Ну, слава богу, тепег"ь ложись спать. Еще вздг"емнем до утг"а.
– Да… Нет, – сказал Петя. – Мне еще не хочется спать. Да я и себя знаю, ежели засну, так уж кончено. И потом я привык не спать перед сражением.
Петя посидел несколько времени в избе, радостно вспоминая подробности своей поездки и живо представляя себе то, что будет завтра. Потом, заметив, что Денисов заснул, он встал и пошел на двор.
На дворе еще было совсем темно. Дождик прошел, но капли еще падали с деревьев. Вблизи от караулки виднелись черные фигуры казачьих шалашей и связанных вместе лошадей. За избушкой чернелись две фуры, у которых стояли лошади, и в овраге краснелся догоравший огонь. Казаки и гусары не все спали: кое где слышались, вместе с звуком падающих капель и близкого звука жевания лошадей, негромкие, как бы шепчущиеся голоса.
Петя вышел из сеней, огляделся в темноте и подошел к фурам. Под фурами храпел кто то, и вокруг них стояли, жуя овес, оседланные лошади. В темноте Петя узнал свою лошадь, которую он называл Карабахом, хотя она была малороссийская лошадь, и подошел к ней.
– Ну, Карабах, завтра послужим, – сказал он, нюхая ее ноздри и целуя ее.
– Что, барин, не спите? – сказал казак, сидевший под фурой.
– Нет; а… Лихачев, кажется, тебя звать? Ведь я сейчас только приехал. Мы ездили к французам. – И Петя подробно рассказал казаку не только свою поездку, но и то, почему он ездил и почему он считает, что лучше рисковать своей жизнью, чем делать наобум Лазаря.
– Что же, соснули бы, – сказал казак.
– Нет, я привык, – отвечал Петя. – А что, у вас кремни в пистолетах не обились? Я привез с собою. Не нужно ли? Ты возьми.
Казак высунулся из под фуры, чтобы поближе рассмотреть Петю.
– Оттого, что я привык все делать аккуратно, – сказал Петя. – Иные так, кое как, не приготовятся, потом и жалеют. Я так не люблю.
– Это точно, – сказал казак.
– Да еще вот что, пожалуйста, голубчик, наточи мне саблю; затупи… (но Петя боялся солгать) она никогда отточена не была. Можно это сделать?
– Отчего ж, можно.
Лихачев встал, порылся в вьюках, и Петя скоро услыхал воинственный звук стали о брусок. Он влез на фуру и сел на край ее. Казак под фурой точил саблю.
– А что же, спят молодцы? – сказал Петя.
– Кто спит, а кто так вот.
– Ну, а мальчик что?
– Весенний то? Он там, в сенцах, завалился. Со страху спится. Уж рад то был.
Долго после этого Петя молчал, прислушиваясь к звукам. В темноте послышались шаги и показалась черная фигура.
– Что точишь? – спросил человек, подходя к фуре.
– А вот барину наточить саблю.
– Хорошее дело, – сказал человек, который показался Пете гусаром. – У вас, что ли, чашка осталась?
– А вон у колеса.
Гусар взял чашку.
– Небось скоро свет, – проговорил он, зевая, и прошел куда то.
Петя должен бы был знать, что он в лесу, в партии Денисова, в версте от дороги, что он сидит на фуре, отбитой у французов, около которой привязаны лошади, что под ним сидит казак Лихачев и натачивает ему саблю, что большое черное пятно направо – караулка, и красное яркое пятно внизу налево – догоравший костер, что человек, приходивший за чашкой, – гусар, который хотел пить; но он ничего не знал и не хотел знать этого. Он был в волшебном царстве, в котором ничего не было похожего на действительность. Большое черное пятно, может быть, точно была караулка, а может быть, была пещера, которая вела в самую глубь земли. Красное пятно, может быть, был огонь, а может быть – глаз огромного чудовища. Может быть, он точно сидит теперь на фуре, а очень может быть, что он сидит не на фуре, а на страшно высокой башне, с которой ежели упасть, то лететь бы до земли целый день, целый месяц – все лететь и никогда не долетишь. Может быть, что под фурой сидит просто казак Лихачев, а очень может быть, что это – самый добрый, храбрый, самый чудесный, самый превосходный человек на свете, которого никто не знает. Может быть, это точно проходил гусар за водой и пошел в лощину, а может быть, он только что исчез из виду и совсем исчез, и его не было.
Что бы ни увидал теперь Петя, ничто бы не удивило его. Он был в волшебном царстве, в котором все было возможно.
Он поглядел на небо. И небо было такое же волшебное, как и земля. На небе расчищало, и над вершинами дерев быстро бежали облака, как будто открывая звезды. Иногда казалось, что на небе расчищало и показывалось черное, чистое небо. Иногда казалось, что эти черные пятна были тучки. Иногда казалось, что небо высоко, высоко поднимается над головой; иногда небо спускалось совсем, так что рукой можно было достать его.
Петя стал закрывать глаза и покачиваться.
Капли капали. Шел тихий говор. Лошади заржали и подрались. Храпел кто то.
– Ожиг, жиг, ожиг, жиг… – свистела натачиваемая сабля. И вдруг Петя услыхал стройный хор музыки, игравшей какой то неизвестный, торжественно сладкий гимн. Петя был музыкален, так же как Наташа, и больше Николая, но он никогда не учился музыке, не думал о музыке, и потому мотивы, неожиданно приходившие ему в голову, были для него особенно новы и привлекательны. Музыка играла все слышнее и слышнее. Напев разрастался, переходил из одного инструмента в другой. Происходило то, что называется фугой, хотя Петя не имел ни малейшего понятия о том, что такое фуга. Каждый инструмент, то похожий на скрипку, то на трубы – но лучше и чище, чем скрипки и трубы, – каждый инструмент играл свое и, не доиграв еще мотива, сливался с другим, начинавшим почти то же, и с третьим, и с четвертым, и все они сливались в одно и опять разбегались, и опять сливались то в торжественно церковное, то в ярко блестящее и победное.
«Ах, да, ведь это я во сне, – качнувшись наперед, сказал себе Петя. – Это у меня в ушах. А может быть, это моя музыка. Ну, опять. Валяй моя музыка! Ну!..»
Он закрыл глаза. И с разных сторон, как будто издалека, затрепетали звуки, стали слаживаться, разбегаться, сливаться, и опять все соединилось в тот же сладкий и торжественный гимн. «Ах, это прелесть что такое! Сколько хочу и как хочу», – сказал себе Петя. Он попробовал руководить этим огромным хором инструментов.
«Ну, тише, тише, замирайте теперь. – И звуки слушались его. – Ну, теперь полнее, веселее. Еще, еще радостнее. – И из неизвестной глубины поднимались усиливающиеся, торжественные звуки. – Ну, голоса, приставайте!» – приказал Петя. И сначала издалека послышались голоса мужские, потом женские. Голоса росли, росли в равномерном торжественном усилии. Пете страшно и радостно было внимать их необычайной красоте.

Мессье 32, или М32, относится к типу карликовых галактик эллиптической формы. Расположена в созвездии Андромеды. М32 обладает видимой величиной в 8,1 с угловым размером – 8 х 6 угловых минут. Галактика удалена от нашей планеты на 2,9 млн световых лет. По данным Equinox 2000, выведены следующие координаты: прямое восхождение 0 ч. 42,8 мин.; склонение +40 ° 52′. Благодаря этому галактику можно увидеть на протяжении всей осени.

Мессье 32 относится к двум эллиптическим галактикам спутников Великой Андромеды, которые можно наблюдать на предоставленных изображениях. По нижней кромке объекта М31 галактика М32 является самой близкой галактикой, в то время как объект М110 – самая отдаленная галактика по правой верхней кромке. М31 – большая галактика Андромеды, представлена ярким небесным объектом, допустимым для наблюдений невооруженным глазом. Мессье 31, Мессье 32 и Мессье 110 относятся к Местной группе галактик. В нее входят также галактика Треугольника и Млечный Путь.

На предоставленных изображениях видны несжатые фотографии всех трех объектов – М31, М32 и М110. Все фото были сделаны при помощи астрографа Takahashi E-180. Рядом находится изображение трехкратного увеличения центра галактики Мессье 32.

Объект был включен в каталог Мессье, однако его обнаружил французский ученый Ле Жантиль в 1749 году. Опираясь на данные передовых исследователей 2010 года, можно вычислить примерные данные об этой галактике. Расстояние от Земли до Мессье 32 составляет 2,57 млн световых лет, примерная масса варьируется в пределах 3000000000 масс Солнца, а диаметр достигает отметки в 6500 световых лет.

Наблюдения

М32 относится к малым галактикам, но имеет яркую эллиптическую форму. Когда любители рассматривают Туманности Андромеды, именно данный объект покажется им странным. Даже самый обычный телескоп покажет особенности диффузной природы галактики. Она находится по направлению в полградуса на юг от центра галактики М31. Если рассматривать М32 в среднего качества телескоп, можно увидеть звездообразное ядро и компактное, плавно спадающее по яркости овальное гало.

Соседствующие объекты из каталога Мессье

Первый сосед галактики М32 – его физический спутник Туманность Андромеды. Это спиральная сверхгигантская галактика. Второй соседствующей галактикой является эллиптическая М110, а третьей – М31, спутник, который находится по другую сторону от объекта Мессье 32.

Благодаря Карликовой галактике можно увидеть шаровое скопление G156. Оно принадлежит объекту М31. Лучшим инструментом для наблюдения послужит телескоп с апертурой в 400 мм.

Описание Мессье 32 в каталоге

Август 1764 года

Ниже пояса Андромеды на несколько минут располагается небольшая беззвездная туманность. В сравнении с поясом эта небольшая туманность имеет более тусклый свет. Ее обнаружил Ле Жантиль 29 октября 1749 года, а в 1757 году ее увидел Мессье.

Технические детали фотографии Мессье 32

    Объект: М32

    Другие обозначения: NGC 221

    Тип объекта: Карликовая эллиптическая галактика

    Позиция: Астрономическая обсерватория Бифрост

    Монтировка: Astro-Physics 1200GTO

    Телескоп: Гиперболический астрограф TakahashiEpsilon 180

    Камера : Canon EOS 550D (Rebel T2i) (светофильтрBaader UV/IR filter)

    Экспозиция: 8 x 300s, f/2.8, ISO 800

    Оригинальный размер фотографии: 3454 × 5179 pixels (17.9 MP); 11.5″ x 17.3″ @ 300 dpi

Большинство галактик, как и наш Млечный Путь, окружены десятками небольших спутников, которые обращаются по орбитам вокруг них. Эти спутники крайне тусклы - из них лишь самые яркие и близкие были замечены в окрестности нашей Галактики и ближайшего соседа, галактики Андромеда. Но эти карликовые галактики-спутники летают не хаотично: все они расположены примерно в одной плоскости, кажущейся нам прямой линией.

Компланарность кажется неожиданной. Компьютерные модели эволюции галактик показывали, что в каждом направлении небесной сферы должно располагаться примерно одинаковое число галактик-спутников. Долгое время считалось, что такое сферически симметричное распределение - естественное следствие существования темной материи, загадочной субстанции, которая взаимодействует с обычной материей лишь посредством гравитации. Астрономы полагают, что темная материя преобладает во Вселенной и играет ключевую роль в формировании галактик и расширении пространства.

Однако загадка компланарности карликовых галактик не давала покоя и привела некоторых астрономов, включая Крупу, к вопросу, существует ли темная материя вообще. ≪Гипотеза о темной материи показала свою несостоятельность, - заявил он, прерывая мой доклад, - поскольку сделанные на ее основе предсказания о том, что спутники должны быть распределены сферически симметрично вокруг Млечного Пути, находятся в прямом противоречии с тем, что мы наблюдаем≫.

Я представлял другой взгляд на проблему, который пытается объяснить странное расположение галактических спутников наличием космических структур темной материи, больших, чем наш Млечный Путь. Хотя небольшое число скептиков вроде Крупы остаются при своем мнении, недавние работы, включая мою, показывают, как гигантская паутина темной материи способна объяснить уникальное расположение галактик-спутников на небосводе.

Недостающая материя

Гипотеза о темной материи, лежащая в центре этой полемики, впервые была высказана для объяснения других загадочных свойств галактик. В 1930-е гг. великий астроном Фриц Цвикки захотел «взвесить» скопление Волосы Вероники, гигантскую группу почти из тысячи галактик. Начал он с измерения скоростей, с которыми движутся галактики в этом скоплении. К своему удивлению, он обнаружил огромные скорости - тысячи километров в секунду, - достаточно большие, чтобы скопление разорвалось на части. Почему же оно не разлетелось на куски? Цвикки предположил, что скопление заполнено неким невидимым веществом, которое удерживает галактики вместе силой своей гравитации. Эту недостающую субстанцию впоследствии назвали темной материей.

С тех пор как 80 лет назад Цвикки впервые высказал свое предположение, призрак темной материи возникает то тут то там по всей Вселенной, почти в каждой изученной галактике. В нашей собственной - Млечном Пути - астрономы выявили ее существование исходя из характера движения звезд на задворках галактики. Так же как и галактики в скоплении Волосы Вероники, эти звезды движутся слишком быстро, чтобы их могло удержать все видимое вещество. А дюжина карликовых галактик вблизи Млечного Пути, по-видимому, богаче темной материей.

Вездесущность темной материи укрепила уверенность в ее существовании. И действительно, большинство космологов полагают, что темная материя составляет примерно 84% всей материи, перевешивая нормальные атомы в отношении примерно пять к одному.

Такое обилие темной материи предполагает, что она, по-видимому, играет исключительную роль в эволюции Вселенной. Один из путей изучения этой эволюции- использование компьютерных моделей. Начиная с 1970-х гг. ученые в области вычислительной космологии предпринимали попытки моделировать историю Вселенной с помощью компьютерных программ. Методика проста: задайте воображаемый прямоугольный объем; поместите туда в узлах почти совершенной решетки воображаемые точечные частицы, которые в этой модели имитируют сгустки темной материи; рассчитайте гравитационное притяжение каждой частицы со стороны всех остальных и позвольте им двигаться в соответствии с действующим на них гравитационным полем: проследите этот процесс на интервале в 13 млрд лет.

С 1970-х гг. стратегии такого рода значительно развились и стали гораздо более сложными, но в основе своей этот метод используется по сей день. Сорок лет назад программа могла работать лишь с несколькими сотнями частиц. Современные методы компьютерного моделирования позволяют рассчитывать поведение миллиардов частиц в объеме, приближающемся к размеру наблюдаемой Вселенной.

Компьютерное моделирование Вселенной оказалось невероятно удобным способом исследовать отдельные галактики, но при этом оно породило и ряд непростых загадок. Например, компьютерные модели указывают, что темная материя, заполняющая гало вокруг Млечного Пути, стягивает газ и пыль в отдельные сгустки. Эти сгустки должны сжиматься под действием гравитации, образуя звезды и карликовые галактики. Вокруг Млечного Пути, окруженного темной материей, должны быть тысячи малых галактик. Однако, наблюдая ночное небо, мы видим их всего лишь несколько десятков. Неудача всех попыток их обнаружить стала очевидной в 1990-е гг., и с тех пор это называют «проблемой недостающих спутников».

За прошедшие годы астрономы придумали несколько возможных объяснений этой дилеммы. Первая и самая убедительная состоит в том, что не все спутники, появляющиеся в компьютерных моделях, строго соответствуют реально существующим галактикам-спутникам. Массы самых малых сгустков темной материи (и их гравитационное притяжение), возможно, недостаточны, чтобы захватить газ и сформировать звезды. Продолжая эту линию рассуждений, можно предположить, что наблюдаемые галактики-спутники-лишь видимая вершина темного айсберга: возможно, сотни, если не тысячи, темных галактик-спутников, не имеющих звезд, существуют вблизи. Просто мы их не видим.

Второе: даже если в небольших скоплениях темной материи сформировались звезды, возможно, они слишком тусклы, чтобы мы могли увидеть их в наши телескопы. Тогда по мере развития техники и роста чувствительности телескопов астрономы обнаружат новые галактики-спутники. Действительно, за прошедшие несколько лет число известных галактик-спутников, обращающихся вокруг Млечного Пути, удвоилось.

Кроме того, сам диск нашей галактики, вероятно, мешает нам заметить некоторые спутники. Этот диск, по сути, - плотное плоское скопище звезд, настолько яркое, что для невооруженного глаза выглядит полосой белой жидкости (отсюда и название «Млечный Путь»). Очень трудно обнаружить спутники, прячущиеся за диском, столь же трудно, как днем увидеть Луну, - тусклый свет галактики-спутника тонет в сиянии Млечного Пути.

Все эти аргументы вместе взятые решают проблему недостающих галактик-спутников и убеждают большинство астрофизиков. Они спасают идею темной материи, защищая ее от самых серьезных наблюдательных контраргументов. Однако странное пространственное расположение галактик-спутников по-прежнему ставит ученых в тупик.

Новая угроза карлика

В нескольких статьях, опубликованных в конце 1970-х - начале 1980-х гг.. Дональд Линден-Белл (Donald Lynclen-Bell). астрофизик Кембриджского университета, отметил, что многие из галактик-спутников, обращающихся вокруг Млечного Пути, по всей видимости, расположены водной плоскости. Как объяснить такую странную картину? В 2005 г. Крупа и его группа из Боннского университета убедили мир, что такое компланарное расположение не могло быть случайным. Они предположили, что спутники из темной материи были равномерно распределены вокруг Млечного Пути, как и предсказывало компьютерное моделирование, и что только один из сотни этих карликов был достаточно велик, чтобы в нем образовались звезды ион стал заметен в телескоп. С учетом этих абсолютно разумных допущений они задались вопросом: как часто мы можем ожидать, что обнаружим систему вроде Млечного Пути, вокруг которой светящиеся спутники оказались бы выстроенными в ряд? Ответ произвел взрыв в космологии: вероятность этого - менее одной миллионной.

«Если бы формированием галактик управляла темная материя, - возражает Крупа. - то галактики-спутники никогда бы не выстроились вдоль плоскости». Описывая в статье свои результаты. Крупа предложил собственное решение. «Единственный выход из положения, - писал он. - предположить, что спутники Млечного Пути сформировалась не в результате агрегации темной материи». Темной материи, утверждал он. не существует.

Будучи хорошим теоретиком. Крупа предложил альтернативу. Он полагает, что спутники- это осколки крупной галактики -прародительницы, которая когда-то в прошлом пролетела близ Млечного Пути. Так же как астероид, пролетая сквозь атмосферу Земли, раскалывается и оставляет за собой хвост из обломков, возможно, и спутники Млечного Пути возникли из вещества, отобранного у более крупного предка.

Когда мы вглядываемся во Вселенную, говорит Крупа, у некоторых сталкивающихся галактик мы видим длинные мосты звездного вещества, называемые приливными рукавами. Часто приливные рукава содержат небольшие галактики-спутники, которые образовались в результате сжатия захваченного вещества. При подходящих условиях сам процесс отрыва приводит к тому, что захваченное вещество собирается водной плоскости, подобно спутникам Млечного Пути.

Объяснение Крупы было элегантным, простым и самое главное, небесспорным. Оно быстро попало под шквал атак. Например, звезды в галактиках-спутниках Млечного Пути движутся слишком быстро в случае одной лишь обычной материи. Должно быть, вместе их удерживает темная материя, так же как она удерживает все части Млечного Пути. (Действительно, наблюдения указывают, что карликовые спутники Млечного Пути - это галактики с самым большим во Вселенной содержанием темной материи.) А приливный сценарий образования карликовых галактик предполагает, что в них нет темной материи, оставляя открытым вопрос, что не дает им разлететься на части.

Во-вторых, так же как при столкновении один автомобиль повреждает другой, столкновения между дисковыми галактиками разрушают диски. Почти всегда конечный результат столкновения галактик - бесформенный сгусток звезд. Млечный Путь имеет четко выраженную структуру и довольно тонкий диск. Мы не наблюдаем никаких признаков того, что в недавнем прошлом он пострадал в результате какого-либо столкновения или слияния.

Темная паутина

Альтернативное решение загадки необычного выравнивания карликовых галактик требует взглянуть дальше в глубины космоса. В работах по численному моделированию, которые начались в 1970-е гг., непросто изучается эволюция отдельных галактик, в них моделируются гигантские объемы Вселенной. Когда мы делаем это в самых больших масштабах, то видим, что галактики распределены не хаотически. Наоборот, они стремятся объединиться в строга определенную нитевидную структуру, называемую космической паутиной. Мы отчетливо различаем предсказанную структуру, когда рассматриваем карты распределения в пространстве реальных галактик.

Эта космическая паутина состоит из величественных слоев, заполненных миллионами галактик и протянувшихся на сотни миллионов световых лет. Эти слои соединены сигарообразными нитями. В промежутках между нитями лежат пустоты, в которых галактик нет. Большие галактики, такие как наша, обычно располагаются в тех точках паутины, где пересекаются множество нитей.

Будучи аспирантом Даремского университета в Англии, я строил компьютерные модели этих плотных областей. Однажды я принес распечатку последних результатов в кабинет моего научного руководителя Карлоса Френка (Carlos Frenk). Модель, над которой я работал, прослеживала формирование Млечного Пути и его окрестностей на протяжении 13 млрд лет истории Вселенной — Френк несколько секунд внимательно рассматривал компьютерный рисунок, а затем взмахнул листком и воскликнул: «Оставь все остальное! Галактики-спутники, которые ты изучаешь, все до одной лежат в той самой невероятной плоскости Крупы!» Наша модель не воспроизводила результаты сделанных ранее компьютерных моделей - равномерное распределение галактик-спутников в гало Млечного Пути. Вместо этого компьютер предсказывал формирование спутников водной плоскости- очень близко к тому, что наблюдают астрономы. Мы почувствовали, что с нашей модели начнется разгадка тайны того, как карликовые спутники смогли так странно расположиться в пространстве.

«Почему бы тебе не проследить эволюцию спутников обратно во времени, чтобы посмотреть, откуда они взялись?» - предложил Френк. У нас был конечный результат; теперь пришло время исследовать промежуточные этапы эволюции.

Когда мы изучали ход моделирования в обратном направлении, то увидели, что карликовые галактики не возникли в областях, непосредственно примыкавших к Млечному Пути. Как правило, они группировались немного дальше, внутри нитей космической паутины. Нити- это области более высокой плотности, чем космические пустоты. Вероятно, поэтому они притягивают находящиеся поблизости пыль и газ и собирают их в нарождающиеся галактики.