Структура воды. Талая вода и ее применение




Самое важное, уникальное по свойствам и составу вещество нашей планеты - это, конечно, вода. Ведь именно благодаря ей на Земле жизнь есть, в то время как на других известных сегодня объектах Солнечной системы ее нет. Твердая, жидкая, в виде пара - она нужна и важна любая. Вода и ее свойства составляют предмет изучения целой научной дисциплины - гидрологии.

Количество воды на планете

Если рассматривать показатель количества данного оксида во всех агрегатных состояниях, то его на планете около 75% от общей массы. При этом следует учитывать связанную воду в органических соединениях, живых существах, минералах и прочих элементах.

Если учитывать только жидкое и твердое состояние воды, показатель падет до 70,8%. Рассмотрим, как распределяются эти проценты, где содержится рассматриваемое вещество.

  1. Соленой воды в океанах и морях, солончаковых озерах на Земле 360 млн км 2 .
  2. Пресная вода распределена неравномерно: ее в ледниках Гренландии, Арктики, Антарктиды заковано во льды 16,3 млн км 2 .
  3. В пресных реках, болотах и озерах сосредоточено 5,3 млн км 2 оксида водорода.
  4. Подземные воды составляют 100 млн м 3 .

Именно поэтому космонавтам из далекого космического пространства видно Землю в форме шара голубого цвета с редкими вкраплениями суши. Вода и ее свойства, знание особенностей строения являются важными элементами науки. К тому же, в последнее время человечество начинает испытывать явную нехватку пресной воды. Может быть, такие знания помогут в решении данной проблемы.

Состав воды и строение молекулы

Если рассмотреть эти показатели, то сразу станут понятны и свойства, которые проявляет это удивительное вещество. Так, молекула воды состоит из двух атомов водорода и одного атома кислорода, поэтому имеет эмпирическую формулу Н 2 О. Кроме того, при построении самой молекулы большую роль играют электроны обоих элементов. Посмотрим, что собой представляют структура воды и ее свойства.

Очевидно, что каждая молекула ориентирована вокруг другой, и все вместе они формируют общую кристаллическую решетку. Интересно то, что оксид построен в форме тетраэдра - атом кислорода в центре, а две пары электронов его и два атома водорода вокруг асимметрично. Если провести через центры ядер атомов линии и соединить их, то получится именно тетраэдрическая геометрическая форма.

Угол между центром атома кислорода и ядрами водородов составляет 104,5 0 С. Длина связи О-Н = 0,0957 нм. Наличие электронных пар кислорода, а также его большее в сравнении с водородами сродство к электрону обеспечивают формирование в молекуле отрицательно заряженного поля. В противовес ему ядра водородов образуют положительно заряженную часть соединения. Таким образом, выходит, что молекула воды - диполь. Это определяет то, какой может быть вода, и ее физические свойства также зависят от строения молекулы. Для живых существ эти особенности играют жизненно важную роль.

Основные физические свойства

К таковым принято относить кристаллическую решетку, температуры кипения и плавления, особенные индивидуальные характеристики. Все их и рассмотрим.

  1. Строение кристаллической решетки оксида водорода зависит от агрегатного состояния. Оно может быть твердым - лед, жидким - основная вода при обычных условиях, газообразным - пар при повышении температуры воды свыше 100 0 С. Красивые узорные кристаллы формирует лед. Решетка в целом рыхлая, но соединение очень прочное, плотность низкая. Видеть ее можно на примере снежинок или морозных узоров на стеклах. У обычной воды решетка не имеет постоянной формы, она изменяется и переходит из одного состояния в другое.
  2. Молекула воды в космическом пространстве имеет правильную форму шара. Однако под действием земной силы тяжести она искажается и в жидком состоянии принимает форму сосуда.
  3. То, что по структуре оксид водорода - диполь, обуславливает следующие свойства: высокая теплопроводность и теплоемкость, которая прослеживается в быстром нагревании и долгом остывании вещества, способность ориентировать вокруг себя как ионы, так и отдельные электроны, соединения. Это делает воду универсальным растворителем (как полярным, так и нейтральным).
  4. Состав воды и строение молекулы объясняют способность этого соединения образовывать множественные водородные связи, в том числе с другими соединениями, имеющими неподеленные электронные пары (аммиак, спирт и прочие).
  5. Температура кипения жидкой воды - 100 0 С, кристаллизация наступает при +4 0 С. Ниже этого показателя - лед. Если же увеличивать давление, то температура кипения воды резко возрастет. Так, при высоких атмосферах в ней можно растопить свинец, но она при этом даже не закипит (свыше 300 0 С).
  6. Свойства воды весьма значимы для живых существ. Например, одно из самых важных - поверхностное натяжение. Это формирование тончайшей защитной пленки на поверхности оксида водорода. Речь идет о воде в жидком состоянии. Эту пленку разорвать механическим воздействием очень сложно. Учеными установлено, что понадобится сила, равная весу в 100 тонн. Как ее заметить? Пленка очевидна, когда вода капает из крана медленно. Видно, что она словно в какой-то оболочке, которая растягивается до определенного предела и веса и отрывается в виде круглой капельки, слегка искаженной силой тяжести. Благодаря поверхностному натяжению многие предметы могут находиться на поверхности воды. Насекомые, имеющие особые приспособления, могут свободно передвигаться по ней.
  7. Вода и ее свойства аномальны и уникальны. По органолептическим показателям данное соединение - бесцветная жидкость без вкуса и запаха. То, что мы называем вкусом воды, - это растворенные в ней минералы и другие компоненты.
  8. Электропроводность оксида водорода в жидком состоянии зависит от того, сколько и каких солей в нем растворены. Дистиллированная вода, не содержащая никаких примесей, электрический ток не проводит.

Лед - это особое состояние воды. В структуре этого ее состояния молекулы связаны друг с другом водородными связями и формируют красивую кристаллическую решетку. Но она достаточно неустойчива и легко может расколоться, растаять, то есть деформироваться. Между молекулами сохраняется множество пустот, размеры которых превышают размеры самих частиц. Благодаря этому плотность льда меньше, чем жидкого оксида водорода.

Это имеет большое значение для рек, озер и прочих пресных водоемов. Ведь в зимний период вода в них не замерзает полностью, а лишь покрывается плотной коркой более легкого льда, всплывающего наверх. Если бы данное свойство не было характерно для твердого состояния оксида водорода, то водоемы промерзали бы насквозь. Жизнь под водой была бы невозможна.

Кроме того, твердое состояние воды имеет большое значение как источник огромного количества питьевых пресных запасов. Это ледники.

Особенным свойством воды можно назвать явление тройной точки. Это такое состояние, при котором лед, пар и жидкость могут существовать одновременно. Для этого требуются такие условия, как:

  • высокое давление - 610 Па;
  • температура 0,01 0 С.

Показатель прозрачности воды варьируется в зависимости от посторонних примесей. Жидкость может быть полностью прозрачной, опалесцентной, мутной. Поглощаются волны желтого и красного цветов, глубоко проникают лучи фиолетовые.

Химические свойства

Вода и ее свойства - важный инструмент в понимании многих процессов жизнедеятельности. Поэтому они изучены очень хорошо. Так, гидрохимию интересуют вода и ее химические свойства. Среди них можно назвать следующие:

  1. Жесткость. Это такое свойство, которое объясняется наличием солей кальция и магния, их ионов в растворе. Подразделяется на постоянную (соли названных металлов: хлоридов, сульфатов, сульфитов, нитратов), временную (гидрокарбонаты), которая устраняется кипячением. В России воду перед использованием смягчают химическим путем для лучшего качества.
  2. Минерализация. Свойство, основанное на дипольном моменте оксида водорода. Благодаря его наличию молекулы способны присоединять к себе множество других веществ, ионов и удерживать их. Так формируются ассоциаты, клатраты и прочие объединения.
  3. Окислительно-восстановительные свойства. Как универсальный растворитель, катализатор, ассоциат, вода способна взаимодействовать с множеством простых и сложных соединений. С одними она выступает в роли окислителя, с другими - наоборот. Как восстановитель реагирует с галогенами, солями, некоторыми менее активными металлами, с многими органическими веществами. Последние превращения изучает органическая химия. Вода и ее свойства, в частности, химические, показывают, насколько она универсальна и уникальна. Как окислитель она вступает в реакции с активными металлами, некоторыми бинарными солями, многими органическими соединениями, углеродом, метаном. Вообще химические реакции с участием данного вещества нуждаются в подборе определенных условий. Именно от них и будет зависеть исход реакции.
  4. Биохимические свойства. Вода является неотъемлемой частью всех биохимических процессов организма, являясь растворителем, катализатором и средой.
  5. Взаимодействие с газами с образованием клатратов. Обычная жидкая вода может поглощать даже неактивные химически газы и располагать их внутри полостей между молекулами внутренней структуры. Такие соединения принято называть клатратами.
  6. Со многими металлами оксид водорода формирует кристаллогидраты, в которые он включен в неизменном виде. Например, медный купорос (CuSO 4 *5H 2 O), а также обычные гидраты (NaOH*H 2 O и другие).
  7. Для воды характерны реакции соединения, при которых происходит образование новых классов веществ (кислот, щелочей, оснований). Они не являются окислительно-восстановительными.
  8. Электролиз. Под действием электрического тока молекула разлагается на составные газы - водород и кислород. Один из способов получения их в лаборатории и промышленности.

С точки зрения теории Льюиса вода - это слабая кислота и слабое основание одновременно (амфолит). То есть можно сказать о некоей амфотерности в химических свойствах.

Вода и ее полезные свойства для живых существ

Сложно переоценить то значение, которое имеет оксид водорода для всего живого. Ведь вода и есть сам источник жизни. Известно, что без нее человек не смог бы прожить и недели. Вода, ее свойства и значение просто колоссальны.

  1. Это универсальный, то есть способный растворять и органические, и неорганические соединения, растворитель, действующий в живых системах. Именно поэтому вода - источник и среда для протекания всех каталитических биохимических преобразований, с формированием сложных жизненно важных комплексных соединений.
  2. Способность образовывать водородные связи делает данное вещество универсальным в выдерживании температур без изменения агрегатного состояния. Если бы это было не так, то при малейшем снижении градусов она превращалась бы в лед внутри живых существ, вызывая гибель клеток.
  3. Для человека вода - источник всех основных бытовых благ и нужд: приготовление пищи, стирка, уборка, принятие ванны, купание и плавание и прочее.
  4. Промышленные заводы (химические, текстильные, машиностроительные, пищевые, нефтеперерабатывающие и другие) не сумели бы осуществлять свою работу без участия оксида водорода.
  5. Издревле считалось, что вода - это источник здоровья. Она применялась и применяется сегодня как лечебное вещество.
  6. Растения используют ее как основной источник питания, за счет чего они продуцируют кислород - газ, благодаря которому существует жизнь на нашей планете.

Можно назвать еще десятки причин того, почему вода - это самое широко распространенное, важное и необходимое вещество для всех живых и искусственно созданных человеком объектов. Мы привели только самые очевидные, главные.

Гидрологический цикл воды

Иными словами, это ее круговорот в природе. Очень важный процесс, позволяющий постоянно пополнять исчезающие запасы воды. Как он происходит?

Основных участников трое: подземные (или грунтовые) воды, поверхностные воды и Мировой океан. Важна также и атмосфера, конденсирующая и выдающая осадки. Также активными участниками процесса являются растения (в основном деревья), способные поглощать огромное количество воды в сутки.

Итак, процесс происходит следующим образом. Грунтовые воды заполняют подземные капилляры и стекаются к поверхности и Мировому океану. Затем поверхностные воды поглощаются растениями и транспирируются в окружающую среду. Также происходит испарение с огромных площадей океанов, морей, рек, озер и прочих водоемов. Попав в атмосферу, вода что делает? Конденсируется и проливается обратно в виде осадков (дождь, снег, град).

Если бы не происходили эти процессы, то запасы воды, особенно пресной, давно бы уже закончились. Именно поэтому охране и нормальному гидрологическому циклу уделяется людьми большое внимание.

Понятие о тяжелой воде

В природе оксид водорода существует в виде смеси изотопологов. Это связано с тем, что водород формирует три вида изотопа: протий 1 Н, дейтерий 2 Н, тритий 3 Н. Кислород, в свою очередь, также не отстает и образует три устойчивые формы: 16 О, 17 О, 18 О. Именно благодаря этому существует не просто обычная протиевая вода состава Н 2 О (1 Н и 16 О), но еще и дейтериевая, и тритиевая.

При этом устойчива по структуре и форме именно дейтериевая (2 Н), которая включается в состав практически всех природных вод, но в малом количестве. Именно ее называют тяжелой. Она несколько отличается от обычной или легкой по всем показателям.

Тяжелая вода и ее свойства характеризуются несколькими пунктами.

  1. Кристаллизуется при температуре 3,82 0 С.
  2. Кипение наблюдается при 101,42 0 С.
  3. Плотность составляет 1,1059 г/см 3 .
  4. Как растворитель в несколько раз хуже легкой воды.
  5. Имеет химическую формулу D 2 O.

При проведении опытов, показывающих влияние подобной воды на живые системы, было установлено, что жить в ней способны лишь некоторые виды бактерий. Для приспособления и акклиматизации колониям потребовалось время. Но, приспособившись, они полностью восстановили все жизненно важные функции (размножение, питание). Кроме того, стали очень устойчивы к воздействию радиоактивного излучения. Опыты на лягушках и рыбах положительного результата не дали.

Современные области применения дейтерия и образованной им тяжелой воды - атомная и ядерная энергетика. Получить в лабораторных условиях такую воду можно при помощи электролиза обычной - она образуется как побочный продукт. Сам дейтерий формируется при многократных перегонках водорода в специальных устройствах. Применение его основано на способности замедлять нейтронные синтезы и протонные реакции. Именно тяжелая вода и изотопы водорода - основа для создания ядерной и водородной бомбы.

Опыты на применении дейтериевой воды людьми в небольших количествах показали, что задерживается она недолго - полный вывод наблюдается через две недели. Употреблять ее в качестве источника влаги для жизни нельзя, однако техническое значение просто огромно.

Талая вода и ее применение

Свойства такой воды издревле были определены людьми как целебные. Давно было замечено, что при таянии снега животные стараются напиться водой из образовавшихся лужиц. Позже были тщательно исследованы ее структура и биологическое воздействие на организм человека.

Талая вода, ее признаки и свойства находятся посередине между обычной легкой и льдом. Изнутри она образована не просто молекулами, а набором кластеров, сформированных кристаллами и газом. То есть внутри пустот между структурными частями кристалла находятся водород и кислород. По общему виду строение талой воды сходно со строением льда - сохраняется структурность. Физические свойства такого оксида водорода незначительно меняются в сравнении с обычным. Однако биологическое воздействие на организм отличное.

При замораживании воды первой фракцией превращается в лед более тяжелая часть - это дейтериевые изотопы, соли и примеси. Поэтому эту сердцевину следует удалять. А вот остальная часть - чистая, структурированная и полезная вода. Каково воздействие на организм? Учеными Донецкого НИИ были названы следующие виды улучшений:

  1. Ускорение восстановительных процессов.
  2. Укрепление иммунитета.
  3. У детей после ингаляций такой водой происходит восстановление и излечение простудных заболеваний, проходит кашель, насморк и прочее.
  4. Улучшается дыхание, состояние гортани и слизистых оболочек.
  5. Общее самочувствие человека, активность повышаются.

Сегодня существует ряд сторонников лечения именно талой водой, которые пишут свои положительные отзывы. Однако есть ученые, в том числе медики, которые эти взгляды не поддерживают. Они считают, что вреда от такой воды не будет, но и пользы мало.

Энергетика

Почему свойства воды могут изменяться и восстанавливаться при переходе в разные агрегатные состояния? Ответ на этот вопрос следующий: у данного соединения существует своя информационная память, которая записывает все изменения и приводит к восстановлению структуры и свойств в нужное время. Биоэнергетическое поле, через которое проходит часть воды (та, что поступает из космоса), несет в себе мощный заряд энергии. Эту закономерность часто используют при лечении. Однако с медицинской точки зрения не каждая вода способна оказать благоприятный эффект, в том числе и информационный.

Структурированная вода - что это?

Это такая вода, которая имеет несколько иное строение молекул, расположение кристаллических решеток (такое, которое наблюдается у льда), но это все же жидкость (талая также относится к этому типу). В этом случае состав воды и ее свойства с научной точки зрения не отличаются от тех, что характерны для обычного оксида водорода. Поэтому структурированная вода не может иметь такого широкого лечебного эффекта, который ей приписывают эзотерики и сторонники нетрадиционной медицины.

Содержание: Необходимо различать, с одной стороны, воду и, с другой растворенные в ней вещества, обусловливающие химический, состав и минерализацию воды. Геологические судьбы раство­рителя и растворенного вещества могут идти своими, обособленными путями. Вода чаще всего попадает в земную кору и из атмосферы, а растворенное вещество заимствуется в основ­ном из горных пород и почв. Возьмем воду в чистом виде, без солей, и рассмотрим те ее особенности строения и свойства, от которых зависит растворяющая способность, воды.

Состав воды. Вода - химическое соединение кислорода и водорода, которое принято обозначать формулой Н 2 О. На самом деле во­да имеет более сложный состав. Обычный молекуляр­ный вес воды 18, но встречаются молекулы с молекулярным весом 19, 20, 21, 22. Эти молекулы состоят из более тяжелых атомов водорода и кислорода, имеющих атомные веса соот­ветственно более 1 и 16, У водорода два стабильных изотопа: протий (Н) и дейтерий (D); отношение Н: D =6800. Кроме того, известен тритий (Т) - радиоактивный изотоп с периодом полураспада 12,5 лет. У кислорода три стабильных изотопа: О 16 , О 17 , О 18. Молекулы воды могут состоять из различных устойчивых изотопов Н 2 О 16 , НDO 16 , D 2 О 16 , Н 2 О 18 , НDO 18 , D 2 О 18 , Н 2 О 17 , НDO 18 , D 2 О 17 .

Изотопная разновидность воды, в которой протий замещен дейтерием, называется тяжелой водой. Однако в природе до сих пор не открыта ни собственно легкая, ни тяжелая вода. Тяжелую воду в настоящее время приготовляют искусст­венно в больших количествах для различных технических це­лей Тяжелая вода отличается от обычной не только физиче­скими свойствами, но и физиологическим воздействием на организм.

Особый геохимический и практический интерес представ­ляет дейтерии (D). Электронная оболочка атома дейтерия, так же как и протия, состоит из одного электрона, но ею яд­ро - дейтон- примерно вдвое тяжелее и состоит из двух частиц - протона и нейтрона. Дейтерий применяется в совре­менной ядерной технике как взрывчатое вещество. В будущем он будет использоваться как горючее в термоядерных энерге­тических установках. Запасы термоядерной энергии дейтерия, имеющиеся в воде земных океанов, примерно в сто миллио­нов превосходят запасы энергии ископаемого топлива (угля, нефти, газа, торфа).

Различные по генезису природные воды имеют неодина­ковый изотопный состав. Одной из главных причин, создающих дифференциацию изотопов в природных водах, является процесс испарения Уп­ругость паров тяжелой воды несколько ниже упругости паров обычной, а так как процесс испарения является основным фактором круговорота воды, то обогащение вод тяжелыми изотопами в местах испарения и обеднение ими в местах кон денсации может вызвать заметную разницу в плотности воды.


Установлена следующая зако­номерность распределения изотопов водорода в поверхностных и атмосферных водах:

1. Пресные поверхностные воды рек, озер и других водое­мов, наполняющихся главным образом за счет атмосферных осадков, содержат дейтерия меньше, чем океанические воды.

2 Изотопный состав пресных поверхностных вод определяется физико-географическими условиями их нахождения.

Строение воды. Еще в двадцатых годах нашего века на основе учения о полярной структуре молекул воды были разработаны простейшие представления об ассоциации молекул в жидкой воде как результате взаимодействия диполей. Эти представления заключаются в следующем.

Одной из особенностей строения молекулы воды является несимметричное расположение атомов водорода вокруг атома кислорода они расположены не по прямой, проведенной через центр атома кислорода, а под некоторым углом (рис 1). Центры ядер атомов водорода расположены на расстояние 0,95 А от центра атома кислорода. Угол между линиями, соединяющими центры атомов кислорода и водорода, равен 105 0 . Связь между атомами кислорода и водорода в молекуле во­ды осуществляется электронами . Вследствие несимметрично­сти распределения электрических зарядов молекула воды об­ладает полярностью, т.е. имеет два полюса - положитель­ный и отрицательный, которые так же, как и магнит, создают вокруг нее силовые ноля.

Таким образом, для молекул воды характерно дипольных: строение (диполи). Их изображают в виде овалов, полюса которых имеют противоположные по знаку электрические заря­ды. При достаточном сближении молекулы воды начинают действовать друг на друга своими силовыми нолями. При этом положительно заряженный полюс одной молекулы притягива­ет отрицательно заряженный полюс другой. В результате мо­гут получиться агрегаты из двух, трех и, по-видимому, более молекул (рис. 2).

Такие группировки молекул воды называются дигидролями (Н 2 О) 2 и тригидролями (Н 2 О) . Следовательно, в воде одновременно присутствуют одиночные (моногидроли), двой­ные я тройные молекулы. Содержание их меняется в зависи­мость от температуры. Во льдe доминируют тройные молеку­лы, обладающие наибольшим объемом . При повышении тем­пературы скорость молекул возрастает, и силы притяжения между молекулами оказываются недостаточными для удер­жания их друг около друга. В жидком состоянии вода пред­ставляет смесь дигидролей, тригдролей и моногпдролей. По мере увеличения температуры тройные и двойные молекулы распадаются, и при 10О°С вода состоит главным образом из моногидролей.

Химически чистая вода обладает рядом свойств, резко отличающих ее от других природных тел.

1. При нагревании воды от 0 до 4°С объем воды не увеличивается, а уменьшается, и максимальная плотность ее достигается не в точке замерзания (0 0 С), а при 4 0 С (точнее 3,98 0).

2. Вода при замерзании расширяется, а не сжимается, как все другие тела, плотность ее уменьшается.

3. Температура замерзания воды с увеличением давления понижается, а не повышается, как этого следовало бы ожи­дать.

4. Удельная теплоемкость воды чрезвычайно велика по сравнению с теплоемкостью других тел.

5. Вследствие высокой диэлектрической постоянной вода обладает большей растворяющей и диссоциирующей способ­ностью, чем другие жидкости.

6. Вода обладает самым большим поверхностным натя­жением из всех жидкостей - 75 эрг/см 2 (глицерин - 65, ам­миак - 42, а все остальные ниже 30 эрг/см 2), за исключени­ем ртути - 436 эрг/см 2 .

Поверхностное натяжение и плотность определяют высо­ту, на которую может подняться жидкость в капиллярной си­стеме при фильтровании через пористые среды.

Причина перечисленных аномальных свойств воды заключается в особенностях строения ее молекул.

Вода как растворитель. Если поместить воду во внешнее электрическое поле, то молекулы ее иод действием поля стремятся расположиться в пространстве так, как показано на


Это явление назы­вается ориентационной поляризацией, которой обладают вещества с полярными молекулами. Высокая полярность моле­кул воды является одной из важнейших причин ее высокой активности при многих химических взаимодействиях. Она же служит причиной и электролитической диссоциации в во­де, солей, кислот и основании. С нею связана также и раство­римость электролитов в воде.

Растворение есть не только физический, но и химический процесс. Растворы образуются путем взаимодействия частиц растворенного вещества с частицами растворителя. Вода об­ладает способностью растворять многие вещества, т. е. да­вать с ними однородные физико-химические системы перемен­ного состава (растворы). Растворенные в природных водах, соли находятся: преимущественно в диссоциированном состоя­нии, в виде ионов. В твердом кристаллическом состоянии ион­ные соединения состоят из закономерно расположенных положительных и отрицательных ионов. Молекулы в этом слу­чае отсутствуют . Так, например, в галите, как эта определено рентгеновским структурным анализом, каждый ион Na + окружен шестью ионами С1 - , а каждый нон С1 - окружен шестью ионами натрия. Ионы взаимодействуют между собой, они притягивают друг друга (ионная связь).

В чем состоит механизм растворения? Молекулы воды в силу особенностей своего строения и возникающего из-за это­го вокруг них силового поля обладают способностью притяги­вать молекулы других веществ. Процесс растворения заклю­чается как раз во взаимодействии частиц растворяющегося вещества с частицами воды. При соприкосновении с водой какой-нибудь соли ноны, образующие ее кристаллическую ре­шетку, будут притягиваться противоположно заряженными частицами молекул воды. Например, при погружении в воду кристаллов галита ион натрия (катион) будет притягиваться, отрицательным полюсом, а ион хлора (анион) - положитель­ным полюсом молекулы воды (рис. 4). Чтобы ионы кристал­лической решетки оторвались друг от друга и перешли в ра­створ, необходимо преодолеть силу притяжения этой решетки. При растворении солей такой силой является притяжение ио­нов решетки молекулами воды, характеризумое так называе­мой энергией гидратации. Если при этом энергия гидратации будет по сравнению с энергией кристаллической решетки достаточно велика, ионы будут оторваны от последней и перейдут в раствор.

В зависимости от природы вещества при его растворении обычно происходит выделение или поглощение тепла. Ионы растворенного вещества притягивают и удерживают вокруг себя определенное число молекул воды, которые образуют оболочку, называемую гпдратной. Таким образом, в водном растворе ионы являются гидратированными, т. е. химически связанными с молекулами воды


При кристаллизации многих солей часть гидратной воды захватывается кристал­лическими решетками . Подобную кристаллизационную воду содержит гипс СаSO 4 *2H 2 O, мирабилит Na 2 SO 4 * 10H 2 O, бишофит MgCl 2 *6H 2 O, астраханит Na 2 SO 4 *MgSO 4 *4H 2 O, сода Na 2 СO 3 *10H2O. Кристаллические вещества, содержащие молекулы воды, называются кристаллогидратами.

Сильные электролиты при растворении в воде полностью диссоциируют на ионы. К ним относятся почти все соли, мно­гие минеральные кислоты, основания щелочных и щелочнозе­мельных металлов. Диссоциация сильного электролита, на­пример NаС1, изображается уравнением

NаС1 Nа + +С1 -

В кристалле галита нет молекул NаС1. При растворении кристаллическая структура разрушается, гидратированные ионы переходят в раствор. Молекулы в растворе отсутствуют. Поэтому лишь условно можно говорить о недиссоциированных молекулах растворов сильных электролитов. Это скорее будут ионные пары (Nа + +С1 -), т.е.

находящиеся близко друг около друга противоположно заряженные ионы (сбли­зившиеся до расстояния, равного сумме радиусов ионов). Это якобы недиссоциированные молекулы, или, как их называют, квазимолекулы.

Слабые электролиты при растворении в воде лишь ча­стично диссоциируют на ионы. К ним относятся почти все ор­ганические кислоты, некоторые минеральные кислоты, напри­мер Н 2 СО, Н 2 S, Н 2 SіО 3 , многие основания металлов. К сла­бым электролитам относится вода.

Кроме электролитов в растворе находятся и неэлектроли­ты, молекулы которых хотя и имеют гидратную оболочку, но "настолько прочны, что не распадаются на ионы (О 2 , N 2).

В зависимости от величины частиц растворенного всщества различают истинные и коллоидные растворы. Растворы называют истынними, когда растворенное вещество находится в них в ионизированном состоянии. В ионном растворе по принципу элктронейтральности всегда содержатся равные количества эквивалентов катионов и анионов. В природных условиях ионные растворы образуются при растворении простых солей.

Коллоидными называются такие растворы, в которых вещество находится не в ионизированном состоянии, а в виде групп молекул, так называемых «коллоидных частиц». Размеры частиц в коллоидных растворах лежат, примерно, в пределах от 10 до 2000 А В устойчивых коллоидных растворах частицы в большинстве случаев несут электрические заряды различные по величине, но одинаковые по знаку для всех частиц данной коллоидной системы. Коллоидные растворы называются золями. Золи способны переходить в гели, т.е. превращаться в студнеобразные массы в результате укрупнения коллоидных частиц (процесс коагуляции).

В природе коллоидные растворы могут быть органическими и неорганическими. Последние образуются преимущественно при гидролитическом расщеплении различных силикатов. Силикаты при гидролизе выделяют заключающиеся в них основания (щелочные и щелочноземельные металлы), дающие начало истинным растворам. Но, кроме того, при гидролизе в раствор переходят кремнй, железо, алюминий и другие металлы, образующие, большей частью, коллоидные растворы.

Многие вещества вступают с водой в реакцию обменного разложения, называемую гидролизом. При гидролизе имеет место сдвиг равновесия диссоциации воды Н О Н + ОН за счет связывания одного из ее ионов ионами растворенного вещества с образованием малодиссоциированного или труднорастворимого продукта. Следовательно, гидролиз – это химическое взаимодействие ионов растворенной соли с водой, сопровождающиеся изменением реакции среды. Ввиду обратимости гидролизаравновесие этого процесса зависит от всех тех фактров, которые вообще влияют на равновесие ионного обмена. В частности, оно сильно (иногда – практически нацело) сдвигается в сторону разложения соли, если продукты последнего (чаще всего в виде основных солей) труднорастворимые.

В природе явление гидролиза играют большую роль. Например, основной химической формой выветривания минералов магматических породявляется гидролиз.

Растворимость солей. В воде могут растворятся твердые, жидкие и газообразные вещества. По растворимости в воде все вещества делятся на три группы: 1) хорошо растворимые, 2) плохо растворимые и 3) практически не растворимые. Необходимо подчеркнуть, что абсолютно нерастворимых веществ нет.

Минерализацию природных вод создают обычно немногие простые соли: хлориды, сульфиды, гидрокарбонаты натрия, магния, кальция.

В кристале галита нет молекул NaCl. При растворении кристаллическая структура разрушается, гидратированные ионы переходят в раствор. Молекулы в растворе отсутствуют. Поэтому лишь условно можно говорить о недиссоциированных молекулах растворов сильных электролитов. Это скоее ионные пары (Na + Cl ), т.е. находящиеся близко друг около друга противоположно заряженные ионы. Это недиссоциированные молекулы, а квазимолекулы.

Слабые электролиты при растворении в воде лиш частично диссоциируют на ионы. К ним относятся почти все органические кристаллы, некоторые минеральные кислоты, например Н СО, Н S, Н SiO , многие основания металлов. К слабым электролитам относится вода.

Кроме электролитов в растворе находятся и неэлектролиты, молекулы которых хотя и имеютгидратную оболочку, но настолько прочны, что не распадаются на ионы (О , N ).

В зависимости от величины частиц растворенного вещества различают истинные и коллоидные растворы. Растворы называют истинными, когда растворенное вещество находится в них ионизированном состоянии.

Растворимость твердых веществ в воде зависит не толь­ко от их химической природы, но и от температуры, давления и от наличия в ней газов и примесей.

Растворимость хлористого натрия мало меняется при повышении температуры от до 60°С (из­менение растворимости дано в г на 100 мг воды). Раствори­мость же карбоната и сульфата натрия сильно возрастает.

На растворимость кремнекислоты температура оказывает большое влияние. В системе кремнекислота - вода, изучен­ной в интервале от 0 до 200°, зависимость растворимости от температуры носит линейный характер. В обычных усло­виях растворимость кремнекислоты очень низкая.

К числу солей, понижающих свою растворимость с ростом температуры, относится Са SO 4 .

Как известно, растворимость данной соли уменьшается в присутствии другой соли, имеющей с ней одноименный ион, и, наоборот, повышается, если в растворе находятся неодноименные ионы. Например, пределы растворимости СаSO 4 в присутствии различных солеи сильно меняются. При наличии в растворе большого количества хлористого натрия (порядка 100 г/л) растворимость СаSO 4 , достигает 5-6 г/л

Из главнейших солей наинизшая растворимость у карбонатов щелочных земель, но она увеличивается в несколько раз, если вода содержит двуокись углерода (СО 2) Растворение идет по схеме:

СаСО 3 + Н 2 О + СО 2 Са(НСО 3) 2 Са ++ +2НСО 3 ;

MgСО 3 + Н 2 О + СО 2 Mg(НСО 3) 2 Mg ++ +2НСО 3 .

Реакции эти носят обратимый характер и протекают до наступления определенного равновесия. В результате указанных реакции в воде появляются гидрокарбонаты кальция и магния. Следует отметить, что ни гидрокарбонатов кальция, ни гидрокарбонатов магния в твердом виде не существует. Минерализация широко распространенных в природе гидро­карбонатных магниево-кальциевых вод обычно достигает 500-600 мг/л. В присутствии больших количеств СО 2 раство­римость Са(НСО 3) 2 и Mg(НСО 3) 2 может превосходить 1 г/л (углекислые минеральные воды).

При увеличении температуры растворимость гидрокарбонатов кальция н магния сильно уменьшается и при 100° падает до 0. При высокой температуре эти соли разлагаются с выделением СО 2 и выпадением карбонатов в осадок

Са(НСО 3) 2 →СаСО 3 +Н 2 О+СО 2 ;

Mg(НСО 3) 2 →MgСО 3 +Н 2 О+СО 2 ;

Отсюда следует, что гидрокарбонатные кальциевые и магниевые воды в глубинных условиях существовать не могут, а, стало быть, и не существуют такого состава термальные воды.

Обогащение вод солями совершается не только путем простого растворения. Природные растворы образуются так же при гидролитическом расщеплении некоторых минералов. К числу минералов, непосредственно в воде нерастворимых, но способных гидролитически расщепляться, относятся различные силикаты-алюмосиликаты, ферросиликаты и пр., - составляющие 75% всех минералов земной коры. Под влияни­ем воды и углекислоты при выветривании силикаты отдают в раствор основания Na + , K + , Ca ++ , Mg ++ . Указанные основания образуют, соединяясь с СО 2 , углекислые и двууглекислые соли или, при соответствующих условиях, сульфатные н хлоридные соли.

Основная литература: ОЛ 1 .

Дополнительная литература : ДЛ 5,7.

Контрольные вопросы:

1. Назовите природные основные изотопы?

2. Какие особые качества воды?

3. Как происходит процесс растворения галита?

4.Вещества по растворимости как подразделяются и называются?

Пептиды, или короткие белки, содержатся во многих продуктах питания — мясе, рыбе, некоторых растениях. Когда мы съедаем кусок мяса, белок расщепляется в процессе пищеварения на короткие пептиды; они всасываются в желудок, тонкий кишечник, попадают в кровь, клетку, затем в ДНК и регулируют активность генов.

Перечисленные препараты желательно периодически применять всем людям после 40 лет для профилактики 1-2 раза в год, после 50 лет — 2-3 раза в год. Остальные препараты — по необходимости.

Как принимать пептиды

Поскольку восстановление функциональной способности клеток происходит постепенно и зависит от уровня существующего их поражения, эффект может наступить как через 1-2 недели после начала приема пептидов, так и через 1-2 месяца. Рекомендуется проведение курса в течение 1-3 месяцев. Важно учитывать, что трехмесячный прием натуральных пептидных биорегуляторов имеет пролонгированное действие, т.е. работает в организме еще порядка 2-3-х месяцев. Полученный эффект удерживается в течение полугода, а каждый следующий курс приема обладает эффектом потенцирования, т.е. эффектом усиления уже полученного.

Поскольку каждый пептидный биорегулятор имеет направленность действия на определенный орган и не влияет никак на другие органы и ткани, одновременный прием препаратов разного действия не только не противопоказан, но зачастую рекомендован (до 6-7 препаратов одновременно).
Пептиды совместимы с любыми лекарственными препаратами и биологическими добавками. На фоне приема пептидов дозы одновременно принимаемых лекарственных препаратов целесообразно постепенно снижать, что положительным образом скажется на организме больного.

Короткие регуляторные пептиды не подвергаются трансформации в желудочно-кишечном тракте, поэтому они могут спокойно, легко и просто применяться в капсулированном виде практически всеми желающими.

Пептиды в ЖКТ распадаются до ди- и три-пептидов. Дальнейший распад до аминокислот происходит в кишечнике. Это означает, что пептиды можно принимать даже без капсулы. Это очень важно, когда человек по каким-то причинам не может глотать капсулы. Это же касается и сильно ослабленных людей или детей, когда дозировку необходимо уменьшить.

Пептидные биорегуляторы можно принимать как в профилактических, так и в терапевтических целях.

  • Для профилактики нарушения функций различных органов и систем обычно рекомендуется по 2 капсулы 1 раз в день утром натощак в течение 30 дней, 2 раза в год.
  • В лечебных целях, для коррекции нарушения функций различных органов и систем с целью повышения эффективности комплексного лечения заболеваний рекомендуется по 2 капсулы 2-3 раза в день в течение 30 дней.
  • Пептидные биорегуляторы представлены в капсулированном виде (натуральные пептиды Цитомаксы и синтезированнные пептиды Цитогены) и в жидком виде.

    Эффективность натуральных (ПК) в 2-2,5 раза ниже, чем капсулированных. Поэтому их прием в лечебных целях должен быть более продолжительным (до полугода). Жидкие пептидные комплексы наносятся на внутреннюю поверхность предплечья в проекции хода вен или на запястье и растираются до полного впитывания. Через 7-15 минут происходит связывание пептидов с дендритными клетками, которые осуществляют их дальнейший транспорт до лимфоузлов, где пептиды делают «пересадку» и отправляются с током крови к нужным органам и тканям. Хотя пептиды — это белковые вещества, их молекулярная масса гораздо меньше, чем у белков, поэтому они легко проникают через кожу. Еще больше улучшает проникновение пептидных препаратов их липофилизация, то есть соединение с жировой основой, именно поэтому практически все пептидные комплексы наружного применения имеют в своем составе жирные кислоты.

    Не такдавно появилась первая в мировой практике серия пептидных препаратов для сублингвального применения

    Принципиально новый способ применения и наличие в составе каждого из препаратов целого ряда пептидов обеспечивают им максимально быстрое и эффективное действие. Данный препарат, попадая в подъязычное пространство с густой сетью капилляров, способен проникать прямо в кровоток, минуя всасывание через слизистую пищеварительного тракта и метаболическую первичную дезактивацию печени. С учетом непосредственного попадания в системный кровоток, скорость наступления эффекта в несколько раз превышает скорость при приеме препарата перорально.

    Линия Revilab SL — это комплексные синтезированные препараты, имеющие в своем составе 3-4 компонента очень коротких цепочек (по 2-3 аминокислоты). По концентрации пептидов — это среднее между капсулированными пептидами и ПК в растворе. По быстроте действия — занимает лидирующую позицию, т.к. всасывается и попадает к цели очень быстро.
    Данную линию пептидов имеет смысл вводить в курс на начальном этапе, а затем переходить на натуральные пептиды.

    Еще одна инновационная серия — линия мультикомпонентных пептидных препаратов. Линия включает в себя 9 препаратов, каждый из которых содержит целый ряд коротких пептидов, а также антиоксиданты и строительный материал для клеток. Идеальный вариант для тех, кто не любит принимать много препаратов, а предпочитает получить все в одной капсуле.

    Действие данных биорегуляторов нового поколения направлено на замедление процессов старения, поддержание нормального уровня обменных процессов, профилактику и коррекцию различных состояний; реабилитацию после тяжелых заболеваний, травм и операций.

    Пептиды в косметологии

    Пептиды можно включать не только в лекарства, но и в другие продукты. Например, российскими учеными разработана великолепная клеточная косметика с натуральными и синтезированными пептидами, которая оказывает воздействие на глубокие слои кожи.

    Внешнее старение кожи зависит от многих факторов: образа жизни, стрессов, солнечного света, механических раздражителей, климатических колебаний, увлечений диетами и т.д. С возрастом кожа обезвоживается, теряет эластичность, становится шероховатой, на ней появляется сеть морщин и глубоких бороздок. Всем нам известно, что процесс естественного старения закономерен и необратим. Противостоять ему невозможно, но его можно замедлить благодаря революционным ингредиентам косметологии — низкомолекулярным пептидам.

    Уникальность пептидов состоит в том, что они свободно проходят через роговой слой в дерму до уровня живых клеток и капилляров. Восстановление кожи идет глубоко изнутри и, как результат, — кожа долгое время сохраняет свою свежесть. К пептидной косметике не происходит привыкания — даже если перестать ею пользоваться, кожа просто физиологически будет стареть.

    Косметические гиганты создают все новые и новые «чудодейственные» средства. Мы доверчиво покупаем, используем, но чуда не происходит. Мы слепо верим надписям на банках, не подозревая, что зачастую это всего лишь маркетинговый прием.

    Например, большинство косметических компаний вовсю производят и рекламируют кремы от морщин с коллагеном в качестве основного ингредиента. Между тем, ученые пришли к выводу, что молекулы коллагена настолько велики, что просто не могут проникнуть в кожу. Они оседают на поверхности эпидермиса, а потом смываются водой. То есть, покупая кремы с коллагеном, мы буквально выкидываем деньги в трубу.

    В качестве еще одного популярного активного ингредиента антиэйдж-косметики используется ресвератрол. Он действительно является мощным антиоксидантом и иммуностимулятором, но только в виде микроинъекций. Если втирать его в кожу, чуда не произойдет. Опытным путем было доказано, что на выработку коллагена кремы с ресвератролом практически не влияют.

    НПЦРИЗ в соавторстве с учеными Санкт-Петербургского института биорегуляции и геронтологии разработал уникальную пептидную серию клеточной косметики (на основе натуральных пептидов) и серию (на основе синтезированных пептидов).

    В их основу заложена группа пептидных комплексов с различными точками приложения, оказывающих мощное и видимое омолаживающее действие на кожу. В результате применения происходит стимуляция регенерации клеток кожи, кровообращения и микроциркуляции, а также синтеза коллаген-эластинового каркаса кожи. Все это проявляется в лифтинге, а также улучшении текстуры, цвета и влажности кожи.

    В настоящее время разработано 16 видов кремов, в т.ч. омолаживающие и для проблемной кожи (с пептидами тимуса), для лица против морщин и для тела против растяжек и рубцов (с пептидами костно-хрящевой ткани), против сосудистых звездочек (с пептидами сосудов), антицеллюлитный (с пептидами печени), для век от отеков и темных кругов (с пептидами поджелудочной железы, сосудов, костно-хрящевой ткани и тимуса), против варикоза (с пептидами сосудов и костно-хрящевой ткани) и др. Все кремы, помимо пептидных комплексов, содержат и другие мощные активные ингредиенты. Важно, что кремы не содержат химических компонентов (консервантов и пр.).

    Эффективность действия пептидов доказана в многочисленных экспериментальных и клинических исследованиях. Конечно, чтобы выглядеть прекрасно, одних кремов мало. Нужно омолаживать свой организм и изнутри, применяя время от времени различные комплексы пептидных биорегуляторов и микронутриентов.

    Линейка косметических средств с пептидами, помимо кремов, включает в себя также шампунь, маску и бальзам для волос, декоративную косметику, тоники, сыворотки для кожи лица, шеи и области декольте и пр.

    Следует учитывать также, что на внешний вид существенно влияет потребляемый сахар.
    Из-за процесса под названием «гликация» сахар разрушительно действует на кожу. Избыток сахара увеличивает скорость деградации коллагена, что приводит к морщинам.

    Гликацию относят к основным теориям старения, наряду с окислительной и фотостарением.
    Гликация – взаимодействие сахаров с белками, в первую очередь коллагена, с образованием поперечных сшивок – это естественный для нашего организма, постоянный необратимый процесс в нашем теле и коже, приводящий к отвердению соединительной ткани.
    Продукты гликации – частицы A.G.E. (Advanced Glycation Endproducts) – оседают в клетках, накапливаются в нашем теле и приводят ко множеству негативных эффектов.
    В результате гликации кожа теряет тонус и становится тусклой, она обвисает и выглядит старой. Это напрямую связано с образом жизни: снизьте потребление сахара и мучного (что полезно и для нормального веса) и каждый день ухаживайте за кожей!

    Для противостояния гликации, торможения деградации белков и возрастных изменений кожи компания разработала антивозрастной препарат с мощным дегликирующим и антиоксидантным эффектом. Действие данного средства основано на стимулировании процесса дегликации, воздействующего на глубинные процессы старения кожи и способствующего разглаживанию морщин и повышению ее упругости. Препарат включает в себя мощный комплекс для борьбы с гликацией — экстракт розмарина, карнозин, таурин, астаксантин и альфа-липоевую кислоту.

    Пептиды — панацея от старости?

    По словам создателя пептидных препаратов В.Хавинсона, старение во многом зависит от образа жизни: «Никакие препараты не спасут, если человек не обладает набором знаний и правильным поведением — это соблюдение биоритмов, правильное питание, физкультура и прием тех или иных биорегуляторов». Что касается генетической предрасположенности к старению, то от генов, по его словам, мы зависим лишь на 25 процентов.

    Ученый утверждает, что пептидные комплексы обладают огромным восстановительным потенциалом. Но возводить их в ранг панацейности, приписывать пептидам несуществующие свойства (скорее всего по коммерческим соображениям) категорически неправильно!

    Заботиться о своем здоровье сегодня — означает дать себе шанс жить завтра. Мы сами должны улучшать свой образ жизни — заниматься спортом, отказываться от вредных привычек, лучше питаться. И конечно же, по мере возможности применять пептидные биорегуляторы, способствующие сохранению здоровья и увеличению продолжительности жизни.

    Пептидные биорегуляторы, разработанные российскими учеными несколько десятков лет назад, стали доступны широкому потребителю только в 2010 году. Постепенно о них узнает все больше людей во всем мире. Секрет сохранения здоровья и моложавости многих известных политиков, артистов, ученых кроется в применении пептидов. Вот только некоторые из них:
    Министр энергетики ОАЭ Шейх Саид,
    Президент Белоруссии Лукашенко,
    Президент Казахстана Назарбаев,
    Король Таиланда,
    академик Ж.И. Алферов, летчик-космонавт Г.М. Гречко и его жена Л.К.Гречко,
    артисты: В.Леонтьев, Е.Степаненко и Е.Петросян, Л. Измайлов, Т.Повалий, И.Корнелюк, И.Винер (тренер по художественной гимнастике) и многие-многие другие...
    Пептидные биорегуляторы применяют спортсмены 2-х олимпийских сборных России — по художественной гимнастике и гребле. Применение препаратов позволяет увеличить стрессоустойчивость наших гимнасток и способствует успехам сборной на международных чемпионатах.

    Если в молодости мы можем себе позволить делать профилактику здоровья периодически, когда нам хочется, то с возрастом, к сожалению, такой роскоши у нас нет. И если Вы не хотите завтра быть в таком состоянии, что Ваши близкие измучаются с Вами и будут ждать Вашей кончины с нетерпением, если Вы не хотите умереть среди чужих людей, потому что ничего не помните и все вокруг кажутся Вам чужими на самом деле, Вы должны с сегодняшнего дня принять меры и заботиться даже не столько о себе, сколько о своих близких.

    В Библии написано: «Ищите и обрящете». Возможно, Вы нашли свой способ оздоровления и омоложения.

    Все в наших руках, и только мы сами можем о себе позаботиться. Никто за нас этого не сделает!











    Значение воды для жизнедеятельности растения

    Лекция 10. Водный обмен.

    1. Значение воды для жизнедеятельности растений

    2. Структура и свойства воды

    3. Водный обмен в растительной клетке

    3.1. Формы воды в растительных клетках

    3.2. Водный потенциал. Осмос. Транспорт воды в растительной клетке

    4. Осмотическое поглощение воды

    5. Механизмы передвижения воды

    6. Верхний и нижний концевые двигатели

    7. Передвижение воды по сосудам

    8. Влияние водного дефицита на физиологические процессы

    9. Особенности водообмена разных экологических групп растений

    В тканях растений вода составляет 70-95% строительной массы. Роль воды в целом организме многообразна. Рассмотрим функции воды в биологических объектах:

    Водная среда объединяет все части организма в единое целое. В теле растения вода представляет собой непрерывную среду на всем протяжении, от воды, поглощаемой корнями, до листьев, испаряющих воду в атмосферу.

    Вода – важнейший растворитель и среда для биохимических реакций;

    Вода участвует в упорядочении структур в клетках, она входит в состав молекул белков, определяя их конформацию;

    Вода – метаболтт и непосредственный участник биохимических реакций. Например, при фотосинтезе вода – донор электронов, она необходима для гидролиза, для синтеза веществ.

    Вода – главный компонент в транспортной системе растений;

    Вода – терморегулирующий фактор, она зхащищает растения от резких колебаний температуры;

    Вода – амортизатор при механических воздействиях;

    Благодаря явлениям осмоса и тургора обеспечивает упругое состояние клеток (все растения по способности регулировать объем, содержащейся в них влаги делятся на пойкилогидротермные и гомеогидротермные. Пойкилогидротермные – не могут регулировать объем воды в организме, например, водоросли, водные растения и др. Гомеогидротермные растения могут регулировать объем воды в организме с помощью устьиц).

    Вода может находиться в трех агрегатных состояниях: твердом, жидком и газообразном. В каждом из этих состояний структура воды неодинакова. При мгновенном замораживании с помощью жидкого азота молекулы воды не успевают построиться в кристаллическую решетку и вода приобретает твердое стеклообразное состояние (состояние витрификации). Это свойство воды позволяет замораживать живые организмы без повреждения. Для кристаллического состояния воды характерно большое разнообразие форм (например, снежинки).

    2.1. Физические свойства воды.

    1. Плотность.

    При 4 о С и давлении 1 атм. один см 3 воды весит один грамм. Т.е. плотность воды равна 1. При замерзании объем воды увеличивается на 11%.



    2. Точки кипения и замерзания .

    При давлении 1 атм. температура кипения воды равна 100 о С, температура замерзания 0 о С. С увеличением давления температура замерзания снижается через каждые 130 атм. на 1 о С, а температура кипения увеличивается.

    3. Теплота плавления

    Теплота плавления льда равна 0,335 кДж/ч. Лед при нормальном давлении может иметь температуру от -1 до -7 о С. Теплота парообразования воды 2,3 кДж/ч.

    4. Теплоемкость.

    Величина теплоемкости воды в 5-30 раз выше, чем у других веществ. Теплоемкость – количество теплоты, необходимое для повышения температуры на 1 о С. Эта особенность воды объясняется сцеплением молекул друг с другом (когезией) за счет водородных связей.

    5. Поверхностное натяжение и прилипание.

    На поверхности воды (из-за способности молекул к когезии) создается поверхностное натяжение. Вода обладает также свойством адгезии (прилипания), что необходимо при подъеме воды против гравитационных сил.

    Вода может находиться в трех агрегатных состояниях -- газообразном, жидком и твердом. В каждом из этих состояний структура воды неодинакова. В зависимости от состава находящихся в ней веществ вода приобретает новые свойства. Твердое состояние воды также бывает, по крайней мере, двух типов: кристаллическое -- лед и некристаллическое -- стеклообразное, аморфное (состояние витрификации). При мгновенном замораживании с помощью, например, жидкого азота молекулы не успевают построиться в кристаллическую решетку, и вода приобретает твердое стеклообразное состояние. Именно это свойство воды позволяет замораживать без повреждения живые организмы, такие, как одноклеточные водоросли, листочки мха Мпіuт, состоящие из двух слоев клеток. Замораживание же с образованием кристаллической воды приводит к повреждению клеток.

    Для кристаллического состояния воды характерно большое разнообразие форм. Давно замечено, что кристаллические структуры воды напоминают радиолярии, листья папоротника, цисты. По этому поводу А. А. Любищев высказал предположение, что законы кристаллизации в чем-то сходны с законами образования живых структур.

    Физические свойства воды. Вода -- самое аномальное вещество, хотя принята за эталон меры плотности и объема для других веществ.

    Плотность. Все вещества увеличивают объём при нагревании, уменьшая при этом плотность. Однако при давлении 0,1013 МПа (1 атм.) у воды в интервале от 0 до 4 0 С при увеличении температуры объём уменьшается и максимальная плотность наблюдается (при этой температуре 1 см 3 воды имеем массу 1г). При замерзании объем воды резко возрастает на 11%, а при таянии льда при 0°С так же резко уменьшается. С увеличением давления температура замерзания воды понижается через каждые 13,17 МПа (130 атм.) на 1 0 С. Поэтому на больших глубинах при минусовых температурах вода в океане не замерзает. С увеличением температуры до 100 0 С плотность жидкой воды понижается на 4% (при 4°С плотность ее равна 1).

    Точки кипения и замерзания (плавления). При давлении 0,1013 МПа (1 атм.) точки замерзания и кипения воды находятся при 0°С и 100°С, что резко отличает Н20 от соединений водорода с элементами VI группы периодической системы Менделеева. В ряду Н2Те, H2Se, H2S и т.д. с увеличением относительной молекулярной массы точки кипения и замерзания этих веществ повышаются. При соблюдении этого правила вода должна была бы иметь точки замерзания между -- 90 и -- 120°С, а кипения -- между 75 и 100 °С. Температура кипения воды возрастает с увеличением давления, а температура замерзания (плавления) -- падает (прил.1).

    Теплота плавления. Скрытая теплота плавления льда очень высока -- около 335 Дж/г (для железа -- 25, для серы -- 40). Это свойство выражается, например, в том, что лед при нормальном давлении может иметь температуру от -- 1 до -- 7°С. Скрытая теплота парообразования воды (2,3 кДж/г) почти в 7 раз выше скрытой теплоты плавления.

    Теплоемкость. Величина теплоемкости воды (т.е. количество теплоты, необходимое для повышения температуры на 1 °С) в 5 --30 раз выше, чем у других веществ. Лишь водород и аммиак обладают большей теплоемкостью. Кроме того, лишь у жидкой воды и ртути удельная теплоемкость с повышением температуры от 0 до 35°С падает (затем начинает возрастать). Удельная теплоемкость воды при 16°С условно принята за единицу, служа эталоном для других веществ. Поскольку теплоемкость песка в 5 раз меньше, чем у жидкой воды, то при одинаковом нагреве солнцем вода в водоеме нагревается в 5 раз слабее, чем песок на берегу, но во столько же раз дольше сохраняет теплоту. Высокая теплоемкость воды защищает растения от резкого повышения температуры при высокой температуре воздуха, а высокая теплота парообразования участвует в терморегуляции у растений.

    Высокие температуры плавления и кипения, высокая теплоемкость свидетельствуют о сильном притяжении между соседними молекулами, вследствие чего жидкая вода обладает большим внутренним сцеплением.

    Вода как растворитель. Полярность молекулы воды обусловливает ее свойство растворять вещества лучше, чем другие жидкости. Растворение кристаллов неорганических солей осуществляется благодаря гидратации входящих в их состав ионов. Хорошо растворяются в воде органические вещества, с карбоксильными, гидроксильными. Карбонильными и с другими группами, которых вода образует водородные связи. (прил. 1)

    Вода в растении находится как в свободном, так и в связанном состоянии (прил.2). Свободная вода - подвижна, она имеет практически все физико-химические свойства чистой воды, хорошо проникает через клеточные мембраны. Существуют специальные мембранные белки, образующие внутри мембраны каналы, проницаемые для воды (аквапорины). Свободная вода вступает в различные биохимические реакции, испаряется в процессе транспирации, замерзает при низких температурах.

    Связанная вода - имеет измененные физические свойства главным образом в результате взаимодействия с неводными компонентами. Условно принимают под связанной водой ту, которая не замерзает при понижении температуры до - 10°С.

    Связанная вода в растениях бывает:

    1) Осмотически - связанная

    2) Коллоидно-связанная

    3) Капиллярно-связанная

    Осмотически-связанная вода - связана с ионами или низкомолекулярными веществами. Вода гидратирует растворенные вещества - ионы, молекулы. Вода электростатически связывается и образует мономолекулярный слой первичной гидратации. Вакуолярный сок содержит сахара, органические кислоты и их соли, неорганические катионы и анионы. Эти вещества удерживают воду осмотически.

    Коллоидно-связанная вода - включает воду, которая находится внутри коллоидной системы и воду, которая находится на поверхности коллоидов и между ними, а также иммобилизованную воду. Иммобилизация представляет собой механический захват воды при конформационных изменениях макромолекул или их комплексов, при этом вода оказывается заключенной в замкнутом пространстве макромолекулы. Значительное количество коллоидно-связанной воды находится на поверхности фибрилл клеточной стенки, а также в биоколлоидах цитоплазмы и матриксе мембранных структур клетки.

    Воду, гидратирующую коллоидные частицы (прежде всего белки), называют коллоидно-связанной, а растворенные вещества (минеральные соли, сахара, органические кислоты и др.) - осмотически-связанной. Некоторые исследователи считают, что вся вода в клетке в той или иной степени связана. Физиологи условно понимают под связанной водой ту, которая не замерзает при понижении температуры до-10 °С. Важно отметить, что всякое связывание молекул воды (добавление растворенных веществ, гидрофобные взаимодействия и др.) уменьшает их энергию. Именно это лежит в основе снижения водного потенциала клетки по сравнению с чистой водой.

    Содержание воды в различных органах растений колеблется в довольно широких пределах. Оно изменяется в зависимости от условий внешней среды, возраста и вида растений. Так, содержание воды в листьях салата составляет 93-95%, кукурузы -- 75-77%. Количество воды неодинаково в разных органах растений: в листьях подсолнечника воды содержится 80-83%, в стеблях - 87-89%, в корнях -- 73-75%. Содержание воды, равное 6-11%, характерно главным образом для воздушно-сухих семян, в которых процессы жизнедеятельности заторможены. Вода содержится в живых клетках, в мертвых элементах ксилемы и в межклетниках. В межклетниках вода находится в парообразном состоянии. Основными испаряющими органами растения являются листья. В связи с этим естественно, что наибольшее количество воды заполняет межклетники листьев. В жидком состоянии вода находится в различных частях клетки: клеточной оболочке, вакуоли, протоплазме. Вакуоли -- наиболее богатая водой часть клетки, где содержание ее достигает 98%. При наибольшей оводненности содержание воды в протоплазме составляет 95%. Наименьшее содержание воды характерно для клеточных оболочек. Количественное определение содержания воды в клеточных оболочках затруднено; по-видимому, оно колеблется от 30 до 50%.

    Формы воды в разных частях растительной клетки также различны. В вакуолярном клеточном соке преобладает вода, удерживаемая сравнительно низкомолекулярными соединениями (осмотически-связанная) и свободная вода. В оболочке растительной клетки вода связана главным образом высокополимерными соединениями (целлюлозой, гемицеллюлозой, пектиновыми веществами), т. е. коллоидно-связанная вода. В самой цитоплазме имеется вода свободная, коллоидно- и осмотически-связанная. Вода, находящаяся на расстоянии до 1 нм от поверхности белковой молекулы, связана прочно и не имеет правильной гексагональной структуры (коллоидно-связанная вода). Кроме того, в протоплазме имеется определенное количество ионов, а, следовательно, часть воды осмотически связана.

    Физиологическое значение свободной и связанной воды различно. Большинство исследователей полагает, что интенсивность физиологических процессов, в том числе и темпов роста, зависит в первую очередь от содержания свободной воды. Имеется прямая корреляция между содержанием связанной воды и устойчивостью растений против неблагоприятных внешних условий. Указанные физиологические корреляции наблюдаются не всегда.