Связь тригонометрии с реальной жизнью. Тригонометрия в медицине




Введение

Реальные процессы окружающего мира обычно связаны с большим количеством переменных и зависимостей между ними. Описать эти зависимости можно с помощью функций. Понятие «функция» сыграло и поныне играет большую роль в познании реального мира. Знание свойств функций позволяет понять суть происходящих процессов, предсказать ход их развития, управлять ими. Изучение функций является актуальным всегда.

Цель : выявить связь тригонометрических функций с явлениями окружающего мира и показать, что данные функции находит широкое применение в жизни.

задачи :

1. Изучить литературу и ресурсы удаленного доступа по теме проекта.

2. Выяснить, какие законы природы выражаются тригонометрическими функцией.

3. Найти примеры применения тригонометрических функций в окружающем мире.

4. Проанализировать и систематизировать имеющийся материал.

5. Подготовить оформленный материал в соответствии с требованиями информационного проекта.

6. Разработать в соответствии с содержанием проекта электронную презентацию.

7. Выступить на конференции с результатами проведённой работы.

На подготовительном этапе я нашел материал по данной теме и ознакомился с ним выдвинул гипотезы сформулировали цель своего проекта. Я начал поиск необходимой информации, изучал литературу по моей теме и материалы ресурсов удаленного доступа.

На основном этапе , была подобрана и накоплена информация по теме, проанализированы найденные материалы. Я выяснил основные области применения тригонометрических функций. Все данные были обобщены и систематизированы. Затем разработан целостный окончательный вариант информационного проекта, составлена презентация по теме исследования.

На заключительном этапе была проанализированапрезентация работы на конкурс. На этом этапе также предполагалась деятельность по реализации всех поставленных задач, подведение итогов, т. е. оценка своей деятельность.

Восход и заход солнца, изменение фаз луны, чередование времен года, биение сердца, циклы в жизнедеятельности организма, вращение колеса, морские приливы и отливы - модели этих многообразных процессов описываются тригонометрическими функциями.


Тригонометрия в физике.

В технике и окружающем нас мире часто приходится сталкиваться с периодическими (или почти периодическими) процессами, которые повторяются через одинаковые промежутки времени. Такие процессы называют колебательными. Колебательные явления различной физической природы подчиняются общим закономерностям. Например, колебания тока в электрической цепи и колебания математического маятника могут описываться одинаковыми уравнениями. Общность колебательных закономерностей позволяет рассматривать колебательные процессы различной природы с единой точки зрения. Наряду с поступательными и вращательными движениями тел в механике значительный интерес представляют и колебательные движения.

Механическими колебаниями называют движения тел, повторяющиеся точно (или приблизительно) через одинаковые промежутки времени. Закон движения тела, совершающего колебания, задается с помощью некоторой периодической функции времени x = f(t). Графическое изображение этой функции дает наглядное представление о протекании колебательного процесса во времени. Примером волны такого рода могут служить волны, бегущие по натянутому резиновому жгуту или по струне.

Примерами простых колебательных систем могут служить груз на пружине или математический маятник (рис.1).

Рис.1. Механические колебательные системы.

Механические колебания, как и колебательные процессы любой другой физической природы, могут быть свободными и вынужденными. Свободные колебаниясовершаются под действием внутренних сил системы, после того, как система была выведена из состояния равновесия. Колебания груза на пружине или колебания маятника являются свободными колебаниями. Колебания, происходящие под действием внешних периодически изменяющихся сил, называются вынужденными.

На рисунке 2 приведены графики координаты, скорости и ускорения тела, совершающего гармонические колебания.

Простейшим видом колебательного процесса являются простые гармонические колебания, которые описываются уравнением:

x = m cos (ωt + f 0).

Рисунок 2- Графики координаты x(t), скорости υ(t)

и ускорения a(t) тела, совершающего гармонические колебания.

Звуковыми волнами или просто звуком принято называть волны, воспринимаемые человеческим ухом.

Если в каком-нибудь месте твердой, жидкой или газообразной среды возбуждены колебания частиц, то вследствие взаимодействия атомов и молекул среды колебания начинают передаваться от одной точки к другой с конечной скоростью. Процесс распространения колебаний в среде называется волной.

Значительный интерес для практики представляют простые гармонические или синусоидальные волны. Они характеризуются амплитудой A колебания частиц, частотой f и длиной волны λ. Синусоидальные волны распространяются в однородных средах с некоторой постоянной скоростьюυ.

Если бы зрение людей обладало способностью видеть звуковые, электромагнитные и радиоволны, то мы видели бы вокруг многочисленные синусоиды всевозможных видов.

Наверняка, каждый не раз наблюдал явление, когда опущенные в воду предметы сразу же меняли свои размеры и пропорции. Интересное явление, погружаешь в воду свою руку, и она сразу же превращается в руку какого-то другого человека. Почему так происходит? Ответ на этот вопрос и подробное объяснение этого явления как всегда дает физика – наука, которая может объяснить практически все, что нас окружает в этом мире.

Итак, на самом деле, при погружении в воду предметы, конечно же, не меняют ни своих размеров, ни своих очертаний. Это просто оптический эффект, то есть мы зрительно воспринимаем этот объект по-другому. Происходит это из-за свойства светового луча. Оказывается, на скорость распространения света в огромной мере влияет, так называемая оптическая плотность среды. Чем плотнее эта оптическая среда, тем медленнее распространяется луч света.

Но и изменение скорости луча света еще не объясняет в полной мере рассматриваемого нами явления. Существует и еще один фактор. Так вот, когда световой луч проходит границу между менее плотной оптической средой, например воздухом, и более плотной оптической средой, например водой, часть светового луча не проникает внутрь новой среды, а отражается от ее поверхности. Другая же часть светового луча проникает внутрь, но, уже меняя направление.

Это явление называется преломлением света, и ученые уже давно могут не просто наблюдать, но и точно рассчитывать угол этого преломления. Оказалось, что простейшие тригонометрические формулы и знание синуса угла падения и угла преломления дают возможность узнать постоянный коэффициент преломления для перехода светового луча из одной конкретной среды в другую. Например, коэффициент преломления воздуха чрезвычайно мал и составляет 1,0002926, коэффициент преломления воды чуть больше - 1,332986, алмаз преломляет свет с коэффициентом 2,419, а кремний - 4,010.

Данное явление лежит в основе, так называемой Теории радуги. Впервые теория радуги была дана в 1637 году Рене Декартом. Он объяснил радугу, как явление, связанное с отражением и преломлением света в дождевых каплях.

Радуга возникает из-за того, что солнечный свет испытывает преломление в капельках воды, взвешенных в воздухе по закону преломления:

где n 1 =1, n 2 ≈1,33 – соответственно показатели преломления воздуха и воды, α – угол падения, а β – угол преломления света.


Применение тригонометрии в искусстве и архитектуре.

С того времени как человек стал существовать на земле, основой улучшения быта и других сфер жизни стала наука. Основы всего, что создано человеком – это различные направления в естественных и математических науках. Одна из них – геометрия. Архитектура не единственная сфера науки, в которой используются тригонометрические формулы. Большинство композиционных решений и построений рисунков проходило именно с помощью геометрии. Но теоретические данные мало что значат. Рассмотрим пример на построение одной скульптуры французского мастера Золотого века искусства.

Пропорциональное соотношение в построении статуи было идеально. Однако при поднятии статуи на высокий пьедестал, она смотрелась уродливой. Скульптором не было учтено, что в перспективе к горизонту уменьшаются многие детали и при взгляде снизу вверх уже не создается впечатления ее идеальности. Велось множество расчетов, чтобы фигура с большой высоты смотрелась пропорционально. В основном они были основаны на методе визирования, то есть приблизительного измерения, на глаз. Однако коэффициент разности тех или иных пропорций позволили сделать фигуру более приближенной к идеалу. Таким образом, зная примерное расстояние от статуи до точки зрения, а именно от верха статуи до глаз человека и высоту статуи, можно рассчитать синус угла падения взгляда с помощью таблицы, тем самым найдем точку зрения (рис.4).

На рисунке 5 ситуация меняется, так как статую поднимают на высоту АС и НС увеличиваются, можно рассчитать значения косинуса угла С, по таблице найдем угол падения взгляда. В процессе можно рассчитать АН, а также синус угла С, что позволит проверить результаты с помощью основного тригонометрического тождества cos 2 a+ sin 2 a = 1.

Сравнив измерения АН в первом и во втором случаи можно найти коэффициент пропорциональности. Впоследствии мы получим чертеж, а потом скульптуру, при поднятии которой зрительно фигура будет приближена к идеалу

Культовые здания во всем мире были спроектированы благодаря математике, которая может считаться гением архитектуры. Некоторые известные примеры таких зданий:Детская школа Гауди в Барселоне, Небоскрёб Мэри-Экс в Лондоне, Винодельня «Бодегас Исиос» в Испании,Ресторан в Лос-Манантиалесе в Аргентине. При проектировании этих зданий не обошлось без тригонометрии.


Тригонометрия в биологии.

Одно из фундаментальных свойств живой природы - это цикличность большинства происходящих в ней процессов. Между движением небесных тел и живыми организмами на Земле существует связь. Живые организмы не только улавливают свет и тепло Солнца и Луны, но и обладают различными механизмами, точно определяющими положение Солнца, реагирующими на ритм приливов, фазы Луны и движение нашей планеты.

Биологические ритмы, биоритмы, - это более или менее регулярные изменения характера и интенсивности биологических процессов. Способность к таким изменениям жизнедеятельности передается по наследству и обнаружена практически у всех живых организмов. Их можно наблюдать в отдельных клетках, тканях и органах, целых организмах и популяциях. Биоритмы подразделяют на физиологические , имеющие периоды от долей секунды до нескольких минут и экологические, по длительности совпадающие с каким либо ритмом окружающей среды. К ним относят суточные, сезонные, годовые, приливные и лунные ритмы. Основной земной ритм – суточный, обусловлен вращением Земли вокруг своей оси, поэтому практически все процессы в живом организме обладают суточной периодичностью.

Множество экологических факторов на нашей планете, в первую очередь световой режим, температура, давление и влажность воздуха, атмосферное и электромагнитное поле, морские приливы и отливы, под влиянием этого вращения закономерно изменяются.

Мы на семьдесят пять процентов состоим из воды, и если в момент полнолуния воды мирового океана поднимаются на 19 метров над уровнем моря и начинается прилив, то вода, находящаяся в нашем организме так же устремляется в верхние отделы нашего тела. И у людей с повышенным давлением часто наблюдаются обострения болезни в эти периоды, а натуралисты, собирающие лекарственные травы, точно знают в какую фазу луны собирать «вершки – (плоды)», а в какую – «корешки».

Вы замечали, что в определенные периоды ваша жизнь делает необъяснимые скачки? Вдруг откуда не возьмись - бьют через край эмоции. Повышается чувствительность, которая внезапно может смениться полной апатией. Творческие и бесплодные дни, счастливые и несчастные моменты, резкие скачки настроения. Подмечено, что возможности человеческого организма меняются периодически. Эти знания лежат в основе «теории трех биоритмов».

Физический биоритм – регулирует физическую активность. В течение первой половины физического цикла человек энергичен, и достигает лучших результатов в своей деятельности (вторая половина – энергичность уступает лености).

Эмоциональный ритм – в периоды его активности повышается чувствительность, улучшается настроение. Человек становится возбудимым к различным внешним катаклизмам. Если у него хорошее настроение, он строит воздушные замки, мечтает влюбиться и влюбляется. При снижении эмоционального биоритма происходит упадок душевных сил, пропадает желание, радостное настроение.

Интеллектуальный биоритм - он распоряжается памятью, способностью к обучению, логическому мышлению. В фазе активности наблюдается подъем, а во второй фазе спад творческой активности, отсутствуют удача и успех.

Теория трех ритмов.

· Физический цикл -23 дня. Определяет энергию, силу, выносливость, координацию движения

· Эмоциональный цикл - 28 дней. Состояние нервной системы и настроение

· Интеллектуальный цикл - 33 дня. Определяет творческую способность личности

Тригонометрия встречается и в природе. Движение рыб в воде происходит по закону синуса или косинуса, если зафиксировать точку на хвосте, а потом рассмотреть траекторию движения. При плавании тело рыбы принимает форму кривой, которая напоминает график функции y=tgx.

При полёте птицы траектория взмаха крыльев образует синусоиду.


Тригонометрия в медицине.

В результате исследования, проведенного студентом иранского университета Шираз Вахидом-Резой Аббаси, медики впервые получили возможность упорядочить информацию, относящуюся к электрической активности сердца или, другими словами, электрокардиографии.

Формула, получившая название тегеранской, была представлена широкой научной общественности на 14-й конференции географической медицины и затем - на 28-й конференции по вопросам применения компьютерной техники в кардиологии, состоявшейся в Нидерландах.

Эта формула представляет собой комплексное алгебраически-тригонометрическое равенство, состоящее из 8 выражений, 32 коэффициентов и 33 основных параметров, включая несколько дополнительных для расчетов в случаях аритмии. Как утверждают медики, эта формула в значительной степени облегчает процесс описания основных параметров деятельности сердца, ускоряя, тем самым, постановку диагноза и начало собственно лечения.

Многим людям приходится делать кардиограмму сердца, но немногие знают, что кардиограмма человеческого сердца – график синуса или косинуса.

Тригонометрия помогает нашему мозгу определять расстояния до объектов. Американские ученые утверждают, что мозг оценивает расстояние до объектов, измеряя угол между плоскостью земли и плоскостью зрения. Такой вывод был сделан после серии экспериментов, участникам которых предлагалось взглянуть на окружающий мир через призмы, увеличивающие этот угол.

Такое искажение приводило к тому, что подопытные носители призм воспринимали удаленные объекты как более близкие и не могли справиться с простейшими тестами. Некоторые из участников экспериментов даже наклонялись вперед, стремясь выровнять свое тело перпендикулярно неправильно представляемой поверхности земли. Однако по происшествии 20 минут они привыкли к искаженному восприятию, и все проблемы исчезли. Это обстоятельство указывает на гибкость механизма, с помощью которого мозг приспосабливает зрительную систему к меняющимся внешним условиям. Интересно заметить, что после того, как призмы были сняты, некоторое время наблюдался обратный эффект - переоценка расстояния.

Результаты нового исследования, как можно предположить, окажутся небезынтересны инженерам, конструирующим системы навигации для роботов, а также специалистам, которые работают над созданием максимально реалистичных виртуальных моделей. Возможны и приложения в области медицины, при реабилитации пациентов с повреждениями определенных областей мозга.


Заключение

В настоящее время тригонометрические вычисления применяются практически во всех областях геометрии, физики и инженерного дела. Большое значение имеет техника триангуляции, позволяющая измерять расстояния до недалёких звёзд в астрономии, между ориентирами в географии, контролировать системы навигации спутников. Также следует отметить применение тригонометрии в таких областях, как теория музыки, акустика, оптика, анализ финансовых рынков, электроника, теория вероятностей, статистика, медицина (включая ультразвуковое исследование (УЗИ) и компьютерную томографию), фармацевтика, химия, теория чисел, сейсмология, метеорология, океанология, картография, многие разделы физики, топография и геодезия, архитектура, экономика, электронная техника, машиностроение, компьютерная графика, кристаллография.

Выводы:

· Мы выяснили, что тригонометрия была вызвана к жизни необходимостью производить измерения углов, но со временем развилась и в науку о тригонометрических функциях.

· Мы доказали, что тригонометрия тесно связана с физикой, биологией, встречается в природе, архитектуре и медицине.

· Мы думаем, что тригонометрия нашла отражение в нашей жизни, и сферы, в которых она играет важную роль, будут расширяться.


Литература

1. Алимов Ш.А.и др. "Алгебра и начала анализа" Учебник для 10-11 классов общеобразовательных учреждений, М., Просвещение, 2010.

2. Виленкин Н.Я. Функции в природе и техники: Кн. для внеклас. чтения IX-XX кл. – 2-е изд., испр.-М: Просвещение, 1985.

3. Глейзер Г.И. История математики в школе: IX-X кл. - М.: Просвещение, 1983.

4. Маслова Т.Н. «Справочник школьника по математике»

5. Рыбников К.А. История математики: Учебник. - М.: Изд-во МГУ, 1994.

6. Учеба.ru

7. Math.ru «библиотека»

Другие разделы

Слово «тригонометрия» впервые встречается (1505 г.) в заглавии книги немецкого теолога и математика Питискуса. Происхождение этого слова греческое: xpiyrovov - треугольник, цетресо - мера. Иными словами, тригонометрия - наука об измерении треугольников. Хотя название возникло сравнительно недавно, многие относимые сейчас к тригонометрии понятия и факты были известны уже две тысячи лет назад.

Длительную историю имеет понятие
синуса. Фактически различные отношения отрезков треугольника и окружности (а по существу, и тригонометрические функции) встречаются уже в III в. до н. э. в работах великих математиков Древней Греции - Евклида, Архимеда, Аполлония Пергского. В римский период эти отношения уже достаточно систематично исследовались Менелаем (1в. н.э.), хотя и не приобрели специального названия.

В последующий период математика долгое время наиболее активно развивалась индийскими и арабскими учеными. В IV-V вв. появился, в частности, уже специальный термин в трудах по астрономии великого индийского ученого Ариабхаты (476 - ок. 550), именем которого назван первый индийский спутник Земли. Отрезок он назвал ардхаджива
.

Позднее привилось более краткое название джива. Арабскими математиками в IX в. слово джива (или джиба) было заменено на арабское слово джайб (выпуклость). При переводе арабских математических текстов в XII в. это слово было заменено латинским
синус (sinus - изгиб, кривизна).

Слово косинус намного моложе.
Косинус - это сокращение латинского выражения complementy sinus, т. е. «дополнительный синус» (или иначе «синус дополнительной дуги»; вспомните cos а = sin (90° - а)).

Тангенсы возникли в связи с решением задачи об определении длины тени. Тангенс (а также котангенс, секанс и косеканс) введен в X в. арабским математиком Абул-Вафой, который составил и первые таблицы для нахождения тангенсов и котангенсов. Однако эти открытия долгое время оставались неизвестными европейским ученым, и тангенсы были заново открыты в XIV в. сначала английским ученым Т. Бравердином, а позднее немецким математиком, астрономом Региомонтаном (1467 г.). 

Название «тангенс», происходящее от латинского tanger (касаться), появилось в 1583 г. Tangens переводится как «касающийся» (линия тангенсов - это касательная к единичной окружности).


Современные обозначения
arcsin и arctg появляются в 1772 г. в работах венского математика Шерфера и известного французского ученого Лагранжа, хотя несколько ранее их уже рассматривал Я. Бернулли, который употреблял иную символику. Но общепринятыми эти символы стали лишь в конце XVIII столетия. Приставка «арк» происходит от латинского arcus (лук, дуга), что вполне согласуется со смыслом понятия: arcsin х, например, - это угол (а можно сказать, и дуга), синус которого равен х.

Длительное время тригонометрия развивалась как часть геометрии
. Пожалуй, наибольшие стимулы к развитию тригонометрии возникали в связи с решением задач астрономии, что представляло большой практический интерес (например, для решения задач определения местонахождения судна, предсказания затмений и т. д.).

Астрономов интересовали соотношения между сторонами и углами сферических треугольников, составленных из больших кругов, лежащих на сфере.


Во всяком случае в геометрической форме многие формулы тригонометрии открывались и переоткрывались древнегреческими, индийскими, арабскими математиками. (Правда, формулы разности тригонометрических функций стали известны только в XVII в.- их вывел английский математик Непер для упрощения вычислений с тригонометрическими функциями. А первый рисунок синусоиды появился в 1634 г.)


Принципиальное значение имело составление К. Птолемеем первой таблицы синусов (долгое время она называлась таблицей хорд): появилось практическое средство решения ряда прикладных задач, и в первую очередь задач астрономии.


Современный вид тригонометрии придал крупнейший математик XVIII столетия Л . Эйлер (1707-1783), швейцарец по происхождению, долгие годы работавший в России и являвшийся членом Петербургской Академии наук. Именно Эйлер первым ввел известные определения тригонометрических функций, стал рассматривать функции произвольного угла, получил формулы приведения. Все это малая доля того, что за долгую жизнь Эйлер успел сделать в математике: он оставил свыше 800 работ, доказал многие ставшие классическими теоремы, относящиеся к самым разным областям математики. (Несмотря на то что в 1776 г. Эйлер потерял зрение, он до последних дней продолжал диктовать все новые и новые работы.)

После Эйлера тригонометрия приобрела форму исчисления: различные факты стали доказываться путем формального применения формул тригонометрии, доказательства стали намного компактнее, проще.

Область применения тригонометрии охватывает самые разные сферы математики, некоторые разделы естествознания и техники.

Тригонометрия имеет несколько разновидностей:

    Сферическая тригонометрия занимается изучением сферических треугольников.

    Прямолинейная или плоская тригонометрия изучает обычнее треугольники.


Значительно развили тригонометрию древнегреческие и эллинистические ученые. Однако в работах Евклида и Архимеда тригонометрия представлена в геометрическом виде. Теоремы о длине хорд применяются в законах синусов. А теорема Архимеда для деления хорд соответствует формулам для синусов суммы и разности углов.

В настоящее время математики используют новую запись известных теорем, например, sin α/ sin β < α/β < tan α/ tan β, где 0° < β < α < 90°, тем самым, компенсируют недостатки таблиц хорд, времен Аристарха Самосского.

Предположительно первые тригонометрические таблицы были составлены Гиппархом Никейским , которого по праву считают «отцом тригонометрии». Ему принадлежит заслуга в создании сводной таблицы величин дуг и хорд для серии углов. Более того именно Гиппарх Никейский впервые стал использовать 360° окружности.

Клавдий Птолемей значительно развил и расширил учение Гиппарха. Теорема Птолемея гласит: сумма произведений противоположных сторон циклического четырехугольника равна произведению диагоналей. Следствием теоремы Птолемея стало понимание эквивалентности четырех формул суммы и разности для синуса и косинуса. Кроме того, Птолемей вывел формулу половинного угла. Все свои результаты Птолемей использовал при составлении тригонометрических таблиц. К сожалению, ни одной подлинной тригонометрической таблицы Гиппарха и Птолемея не сохранилось до наших дней.

Тригонометрические вычисления нашли свое применение почти во всех областях геометрии, физики и инженерного дела.
С помощью тригонометрии (техника триангуляции) можно измерять расстояния между звездами, между ориентирами в географии, производить контроль над системами навигации спутников.


Тригонометрия успешно применяется в технике навигации, теории музыки, акустике, оптике, при анализе финансовых рынков, электронике, теории вероятности, статистике, биологии и медицине, химии и теории чисел (криптографии), сейсмологии, метеорологии, океанологии, картографии, топографии и геодезии, архитектуре и фонетике, машиностроении и компьютерной график
е .

исследование, начало которого напоминает маленькую волну, после чего наблюдается систолический подъем. Маленькая волна, как правило, показывает сокращение предсердия. С началом подъема совпадает начало изгнания крови в аорту. На этой же ленте можно увидеть еще одну максимально высокую вершину, которая сигнализирует о закрытии полулунных клапанов. Форма данного отрезка максимального подъема может быть достаточно многообразной, что приводит к различным результатам данного исследования. После максимального подъема следует спуск кривой, который продолжается до самого конца. Данный отрезок верхушечной кардиограммы сопровождается открытием митрального клапана. После этого – незначительный подъем волны. Он указывает на время быстрого наполнения. Весь остальной отрезок кривой обозначается как время пассивного наполнения желудочка. Такое исследование правого желудочка способна указать на возможные патологические отклонения.

Тригонометрия - это раздел математики, в котором изучаются тригонометрические функции и их использование в геометрии. Тригонометрические функции используются для описания свойств различных углов, треугольников и периодических функций. Изучение тригонометрии поможет вам понять эти свойства. Занятия в школе и самостоятельная работа помогут вам усвоить основы тригонометрии и понять многие периодические процессы.

Шаги

Изучите основы тригонометрии

    Ознакомьтесь с понятием треугольника. В сущности, тригонометрия занимается изучением различных соотношений в треугольниках. Треугольник имеет три стороны и три угла. Сумма углов любого треугольника составляет 180 градусов. При изучении тригонометрии необходимо ознакомиться с треугольниками и связанными с ними понятиями, такими как:

    • гипотенуза ― самая длинная сторона прямоугольного треугольника;
    • тупой угол ― угол более 90 градусов;
    • острый угол ― угол менее 90 градусов.
  1. Научитесь строить единичную окружность. Единичная окружность дает возможность построить любой прямоугольный треугольник так, чтобы гипотенуза была равна единице. Это удобно при работе с тригонометрическими функциями, такими как синус и косинус. Освоив единичную окружность, вы легко сможете находить значения тригонометрических функций для определенных углов и решать задачи, в которых фигурируют треугольники с этими углами.

    • Пример 1. Синус угла величиной 30 градусов составляет 0,50. Это означает, что длина противолежащего данному углу катета равна половине длины гипотенузы.
    • Пример 2. С помощью данного соотношения можно вычислить длину гипотенузы треугольника, в котором есть угол величиной 30 градусов, а длина противолежащего этому углу катета равна 7 сантиметрам. В этом случае длина гипотенузы составит 14 сантиметров.
  2. Ознакомьтесь с тригонометрическими функциями. Существует шесть основных тригонометрических функций, которые необходимо знать при изучении тригонометрии. Эти функции представляют собой соотношения между различными сторонами прямоугольного треугольника и помогают понять свойства любого треугольника. Вот эти шесть функций:

    • синус (sin);
    • косинус (cos);
    • тангенс (tg);
    • секанс (sec);
    • косеканс (cosec);
    • котангенс (ctg).
  3. Запомните соотношения между функциями. При изучении тригонометрии крайне важно понимать, что все тригонометрические функции связаны между собой. Хотя синус, косинус, тангенс и другие функции используются по-разному, они находят широкое применение благодаря тому, что между ними существуют определенные соотношения. Эти соотношения легко понять с помощью единичной окружности. Научитесь пользоваться единичной окружностью, и с помощью описываемых ею соотношений вы сможете решать многие задачи.

    Применение тригонометрии

    1. Узнайте об основных областях науки, в которых используется тригонометрия. Тригонометрия полезна во многих разделах математики и других точных наук. С помощью тригонометрии можно найти величины углов и прямых отрезков. Кроме того, тригонометрическими функциями можно описать любой циклический процесс.

      • Например, колебания пружины можно описать синусоидальной функцией.
    2. Подумайте о периодических процессах. Иногда абстрактные понятия математики и других точных наук трудны для понимания. Тем не менее, они присутствуют в окружающем мире, и это может облегчить их понимание. Приглядитесь к периодическим явлениям вокруг вас и попробуйте связать их с тригонометрией.

      • Луна имеет предсказуемый цикл, продолжительность которого составляет около 29,5 дня.
    3. Представьте себе, как можно изучать естественные циклы. Когда вы поймете, что в природе протекает множество периодических процессов, подумайте о том, как можно изучать эти процессы. Мысленно представьте, как выглядит изображение таких процессов на графике. С помощью графика можно составить уравнение, которое описывает наблюдаемое явление. При этом вам пригодятся тригонометрические функции.

      • Представьте себе приливы и отливы на берегу моря. Во время прилива вода поднимается до определенного уровня, а затем наступает отлив, и уровень воды падает. После отлива вновь следует прилив, и уровень воды поднимается. Этот циклический процесс может продолжаться бесконечно. Его можно описать тригонометрической функцией, например косинусом.

    Изучайте материал заранее

    1. Прочтите соответствующий раздел. Некоторым людям тяжело усвоить идеи тригонометрии с первого раза. Если вы ознакомитесь с соответствующим материалом перед занятиями, то лучше усвоите его. Старайтесь чаще повторять изучаемый предмет - таким образом вы обнаружите больше взаимосвязей между различными понятиями и концепциями тригонометрии.

      • Кроме того, это позволит вам заранее выявить неясные моменты.
    2. Ведите конспект. Хотя беглый просмотр учебника лучше, чем ничего, при изучении тригонометрии необходимо неспешное вдумчивое чтение. При изучении какого-либо раздела ведите подробный конспект. Помните, что знание тригонометрии накапливается постепенно, и новый материал опирается на изученный ранее, поэтому записи уже пройденного помогут вам продвинуться дальше.

      • Помимо прочего, записывайте возникшие у вас вопросы, чтобы затем задать их учителю.
    3. Решайте приведенные в учебнике задачи. Даже если вам легко дается тригонометрия, необходимо решать задачи. Чтобы убедиться, что вы действительно поняли изученный материал, попробуйте перед занятиями решить несколько задач. Если при этом у вас возникнут проблемы, вы определите, что именно вам нужно выяснить во время занятий.

      • Во многих учебниках в конце приведены ответы к задачам. С их помощью можно проверить, правильно ли вы решили задачи.
    4. Берите на занятия все необходимое. Не забывайте свой конспект и решения задач. Эти подручные материалы помогут вам освежить в памяти уже пройденное и продвинуться дальше в изучении материала. Проясняйте также все вопросы, которые возникли у вас при предварительном чтении учебника.

    Применение тригонометрии в физике и ее задачах

    Практическое применение тригонометрических уравнений в реальной жизни

    Существует множество областей, в которых применяются тригонометрия. Например, метод триангуляции используется в астрономии для измерения расстояния до ближайших звезд, в географии для измерения расстояний между объектами, а также в спутниковые навигационных системах. Синус и косинус имеют фундаментальное значение для теории периодических функций, например при описании звуковых и световых волн.

    Тригонометрия используются в астрономии (особенно для расчётов положения небесных объектов, когда требуется сферическая тригонометрия), в морской и воздушной навигации, в теории музыки, в акустике, в оптике, в анализе финансовых рынков, в электронике, в теории вероятностей, в статистике, в биологии, в медицинской визуализации (например, компьютерная томография и ультразвук), в аптеках, в химии, в теории чисел, в метеорологии, в океанографии, во многих физических науках, в межевании и геодезии, в архитектуре, в фонетике, в экономике, в электротехнике, в машиностроении, в гражданском строительстве, в компьютерной графике, в картографии, в кристаллографии, в разработке игр и многих других областях.


    В окружающем нас мире приходится сталкиваться с периодическими процессами, которые повторяются через одинаковые промежутки времени. Эти процессы называются колебательными. Колебательные явления различной физической природы подчиняются общим закономерностям и описываются одинаковыми уравнениями. Существуют разные виды колебательных явлений.

    Гармоническое колебание - явление периодического изменения какой-либо величины, при котором зависимость от аргумента имеет характер функции синуса или косинуса. Например, гармонически колеблется величина, изменяющаяся во времени следующим образом:

    Где х - значение изменяющейся величины, t - время, А - амплитуда колебаний, ω - циклическая частота колебаний, - полная фаза колебаний, r - начальная фаза колебаний.

    Обобщенное гармоническое колебание в дифференциальном виде x’’ + ω²x = 0.

    Камень брошен на склоне горы под углом α к ее поверхности. Определите дальность полета камня, если начальная скорость камня равна v 0 , угол наклона горы к горизонту β. Сопротивление воздуха не учитывать.

    Решение. Сложное движение камня по параболе нужно представить как результат наложения двух прямолинейных движений: одного вдоль поверхности Земли, другого - по нормали к ней.

    Выберем прямоугольную систему координат с началом отсчета в точке бросания камня так, чтобы оси OX и OY совпали с указанными направлениями, и найдем составляющие векторов начальной скорости v 0 и ускорения свободного падения g по осям. Проекции этих составляющих на оси OX и OY равны соответственно:
    v 0 cosα v 0 ; -g sinβ -g cosβ



    После этого сложное движение можно рассматривать как два более простых: равнозамедленное движение вдоль поверхности Земли с ускорением g sinβ и равнопеременное движение, перпендикулярное склону горы, с ускорением g cosβ .

    Составляем уравнения движения для каждого направления с учетом того, что за время t всего движения перемещение камня по нормали к поверхности (по оси OY ) оказалось равным нулю, а вдоль поверхности (по оси OX ) - равным s:

    По условию задачи v 0 ,α и β нам заданы, поэтому в составленных уравнениях имеется две неизвестные величины s и t1.

    Из первого уравнения определяем время полета камня:

    Подставляя это выражение во второе уравнение, находим:

    S= v 0 cosα∙ =
    =

    Анализируя решение приведенной задачи, можно сделать вывод, что математика имеет аппарат и использование его при реализации меж предметной связи физики и математики ведет к осознанию единства мира и интеграции научных знаний.

    Математика выступает как своеобразный язык, необходимый для кодирования содержательной физической информации.

    Использование меж предметной связи физики и математики ведет к сравниванию этих двух наук и позволяет усиливать качественную теоретическую и практическую подготовку обучаемых.


    Потребность в решении треугольников раньше всего обнаружилась в астрономии; поэтому, в течение долгого времени тригонометрия развивалась и изучалась как один из разделов астрономии.

    Составленные Гиппархом таблицы положений Солнца и Луны позволили предвычислять моменты наступления затмений (с ошибкой 1-2 ч). Гиппарх впервые стал использовать в астрономии методы сферической тригонометрии. Он повысил точность наблюдений, применив для наведения на светило крест нитей в угломерных инструментах - секстантах и квадрантах. Ученый составил огромный по тем временам каталог положений 850 звезд, разделив их по блеску на 6 степеней (звездных величин). Гиппарх ввел географические координаты - широту и долготу, и его можно считать основателем математической географии. (ок. 190 до н. э. - ок. 120 до н. э.)