Таблица стандартных разложений. Разложение функции в ряд тейлора, маклорена, лорана




Среди функциональных рядов наиболее важное место занимают степенные ряды.

Степенным рядом называют ряд

члены которого – степенные функции, расположенные по возрастающим целым неотрицательным степеням x , а c 0 , c 1 , c 2 , c n - постоянные величины. Числа c 1 , c 2 , c n - коэффициенты членов ряда, c 0 - свободный член. Члены степенного ряда определены на всей числовой прямой.

Ознакомимся с понятием области сходимости степенного ряда. Это множество значений переменной x , для которых ряд сходится. Степенные ряды имеют довольно простую область сходимости. Для действительных значений переменной x область сходимости состоит либо из одной точки, либо является некоторым интервалом (интервалом сходимости), либо совпадает со всей осью Ox .

При подстановке в степенной ряд значения x = 0 получится числовой ряд

c 0 +0+0+...+0+... ,

который сходится.

Следовательно, при x = 0 сходится любой степенной ряд и, значит, область его сходимости не может быть пустым множеством. Структура области сходимости всех степенных рядов одинакова. Её можно установить с помощью следующей теоремы.

Теорема 1 (теорема Абеля) . Если степенной ряд сходится при некотором значении x = x 0 , отличном от нуля, то он сходится, и притом абсолютно, при всех значениях |x | < |x 0 | . Обратите внимание: и отправное значение "икс нулевое" и любое значение "икса", которое сравнивается с отправным, взяты по модулю - без учёта знака.

Следствие. Если степенной ряд расходится при некотором значении x = x 1 , то он расходится и при всех значениях |x | > |x 1 | .

Как мы уже выяснили ранее, любой степенной ряд сходится при значении x = 0. Есть степенные ряды, которые сходятся только при x = 0 и расходятся при остальных значениях х . Исключая из рассмотрения этот случай, предположим, что степенной ряд сходится при некотором значении x = x 0 , отличном от нуля. Тогда, по теореме Абеля, он сходится во всех точках интервала ]-|x 0 |, |x 0 |[ (интервала, левой и правой границами которого являются значения икса, при котором степенной ряд сходится, взятые соответственно со знаком минус и со знаком плюс), симметричного относительно начала координат.

Если же степенной ряд расходится при некотором значении x = x 1 , то на основании следствия из теоремы Абеля он расходится и во всех точках вне отрезка [-|x 1 |, |x 1 |] . Отсюда следует, что для любого степенного ряда имеется интервал , симметричный относительно начала координат, называемый интервалом сходимости , в каждой точке которого ряд сходится, на границах может сходиться, а может и расходиться, при чем не обязательно одновременно, а вне отрезка ряд расходится. Число R называется радиусом сходимости степенного ряда.

В частных случаях интервал сходимости степенного ряда может вырождаться в точку (тогда ряд сходится только при x = 0 и считается, что R = 0) или представлять собой всю числовую прямую (тогда ряд сходится во всех точках числовой прямой и считается, что ).

Таким образом, определение области сходимости степенного ряда заключается в определении его радиуса сходимости R и исследовании сходимости ряда на границах интервала сходимости (при ).

Теорема 2. Если все коэффициенты степенного ряда, начиная с некоторого, отличны от нуля, то его радиус сходимости равен пределу при отношения абсолютных величин коэффициентов общего следующего за ним членов ряда, т.е..

Пример 1. Найти область сходимости степенного ряда

Решение. Здесь

Используя формулу (28), найдём радиус сходимости данного ряда:

Исследуем сходимость ряда на концах интервала сходимости . В примере 13 показано, что данный ряд сходится при x = 1 и расходится при x = -1. Следовательно, областью сходимости служит полуинтервал .

Пример 2. Найти область сходимости степенного ряда

Решение. Коэффициенты ряда положительны, причём

Найдём предел этого отношения, т.е. радиус сходимости степенного ряда:

Исследуем сходимость ряда на концах интервала . Подстановка значений x = -1/5 и x = 1/5 в данный ряд даёт:

Первый из этих рядов сходится (см. пример 5). Но тогда в силу теоремы параграфа «Абсолютная сходимость» сходится и второй ряд, а область его сходимости – отрезок

Пример 3. Найти область сходимости степенного ряда

Решение. Здесь

По формуле (28) находим радиус сходимости ряда:

Исследуем сходимость ряда при значениях . Подставив их в данный ряд, соответственно получим

Оба ряда расходятся, так как не выполняется необходимое условие сходимости (их общие члены не стремятся к нулю при ). Итак, на обоих концах интервала сходимости данный ряд расходится, а область его сходимости – интервал .

Пример 5. Найти область сходимости степенного ряда

Решение. Находимо отношение , где , а :

Согласно формуле (28) радиус сходимости данного ряда

,

то есть ряд сходится только при x = 0 и расходится при остальных значениях х .

Примеры показывают, что на концах интервала сходимости ряды ведут себя различно. В примере 1 на одном конце интервала сходимости ряд сходится, а на другом – расходится, в примере 2 – на обоих концах сходится, в примере 3 – на обоих концах расходится.

Формула радиуса сходимости степенного ряда получена в предположении, что все коэффициенты членов ряда, начиная с некоторого, отличны от нуля. Поэтому применение формулы (28) допустимо только в этих случаях. Если это условие нарушается, то радиус сходимости степенного ряда следует искать с помощью признака Даламбера , или же, сделав замену переменной, преобразованием ряда к виду, в котором указанное условие выполняется.

Пример 6. Найти интервал сходимости степенного ряда

Решение. Данный ряд не содержит членов с нечётными степенями х . Поэтому преобразуем ряд, полагая . Тогда получим ряд

для нахождения радиуса сходимости которого можно применить формулу (28). Так как , а , то радиус сходимости этого ряда

Из равенства получаем , следовательно, данный ряд сходится на интервале .

Сумма степенного ряда. Дифференцирование и интегрирование степенных рядов

Пусть для степенного ряда

радиус сходимости R > 0, т.е. этот ряд сходится на интервале .

Тогда каждому значению х из интервала сходимости соответствует некоторая сумма ряда. Следовательно, сумма степенного ряда есть функция от х на интервале сходимости. Обозначая её через f (x ), можем записать равенство

понимая его в том смысле, что сумма ряда в каждой точке х из интервала сходимости равна значению функции f (x ) в этой точке. В этом же смысле будем говорить, что степенной ряд (29) сходится к функции f (x ) на интервале сходимости.

Вне интервала сходимости равенство (30) не имеет смысла.

Пример 7. Найти сумму сумму степенного ряда

Решение. Это геометрический ряд, у которого a = 1, а q = x . Следовательно, его сумма есть функция . Ряд сходится, если , а - его интервал сходимости. Поэтому равенство

справедливо лишь для значений , хотя функция определена для всех значений х , кроме х = 1.

Можно доказать, что сумма степенного ряда f (x ) непрерывна и дифференцируема на любом отрезке внутри интервала сходимости, в частности в любой точке интервала сходимости ряда.

Приведем теоремы о почленном дифференцировании и интегрировании степенных рядов.

Теорема 1. Степенной ряд (30) в интервале его сходимости можно почленно дифференцировать неограниченное число раз, причём получающиеся при этом степенные ряды имеют тот же радиус сходимости, что исходный ряд, а суммы их соответственно равны .

Теорема 2. Степенной ряд (30) можно неограниченное число раз почленно интегрировать в пределах от 0 до х , если , причём получающиеся при этом степенные ряды имеют тот же радиус сходимости, что и исходный ряд, а суммы их соответственно равны

Разложение функций в степенные ряды

Пусть дана функция f (x ), которую требуется разложить в степенной ряд, т.е. представить в виде (30):

Задача состоит в определении коэффициентов ряда (30). Для этого, дифференцируя равенство (30) почленно, последовательно найдём:

……………………………………………….. (31)

Полагая в равенствах (30) и (31) х = 0, находим

Подставляя найденные выражения в равенство (30), получим

(32)

Найдём разложение в ряд Маклорена некоторых элементарных функций.

Пример 8. Разложить в ряд Маклорена функцию

Решение. Производные этой функции совпадают с самой функцией:

Поэтому при х = 0 имеем

Подставляя эти значения в формулу (32), получим искомое разложение:

(33)

Этот ряд сходится на всей числовой прямой (его радиус сходимости ).

16.1. Разложение элементарных функций в ряды Тейлора иМаклорена

Покажем, что если произвольная функция задана на множестве
, в окрестности точки
имеет множество производных и является суммой степенного ряда:

то можно найти коэффициенты этого ряда.

Подставим в степенной ряд
. Тогда
.

Найдем первую производную функции
:

При
:
.

Для второй производной получим:

При
:
.

Продолжая эту процедуру n раз получим:
.

Таким образом, получили степенной ряд вида:



,

который называется рядом Тейлора для функции
в окресности точки
.

Частным случаем ряда Тейлора является ряд Маклорена при
:



Остаток ряда Тейлора (Маклорена) получается отбрасыванием от основных рядов n первых членов и обозначается как
. Тогда функцию
можно записать как суммуn первых членов ряда
и остатка
:,

.

Остаток обычно
выражают разными формулами.

Одна из них в форме Лагранжа:

, где
.
.

Заметим, что на практике чаще используетсяряд Маклорена. Таким образом, для того, чтобы записать функцию
в виде суммыстепенного ряданеобходимо:

1) найти коэффициенты ряда Маклорена (Тейлора);

2) найти область сходимости полученного степенногоряда;

3) доказать, что данный ряд сходитсяк функции
.

Теорема 1 (необходимое и достаточное условие сходимости ряда Маклорена). Пусть радиус сходимости ряда
. Для того, чтобы этот ряд сходился в интервале
к функции
,необходимо и достаточно, чтобы выполнялось условие:
в указанном интервале.

Теорема 2. Если производные любого порядка функции
в некотором промежутке
ограниченны по абсолютной величине одним и тем же числомM , то есть
, то в этом промежутке функцию
можно разложитьв ряд Маклорена.

Пример 1 . Разложить в ряд Тейлора вокрестноститочки
функцию.

Решение.


.

,;

,
;

,
;

,

.......................................................................................................................................

,
;

Область сходимости
.

Пример 2 . Разложить функциюв ряд Тейлора вокрестноститочки
.

Решение:

Находим значение функции и ее производных при
.

,
;

,
;

...........……………………………

,
.

Подставляем эти значения в ряд. Получаем:

или
.

Найдем область сходимости этого ряда. По признаку Даламбера ряд сходится, если

.

Следовательно, при любом этот пределменее 1, а потому область сходимости ряда будет:
.

Рассмотрим несколько примеров разложенияв ряд Маклорена основных элементарных функций. Напомним, что ряд Маклорена:



.

сходитсянаинтервале
к функции
.

Отметим, что для разложенияфункции в ряд необходимо:

а) найти коэффициенты ряда Маклорена для данной функции;

б) вычислить радиус сходимостидля полученного ряда;

в) доказать, что полученный ряд сходитсяк функции
.

Пример 3. Рассмотримфункцию
.

Решение.

Вычислим значение функции и ее производных при
.

Тогда числовые коэффициенты ряда имеют вид:

для любого n. Подставим найденные коэффициенты в ряд Маклорена и получим:

Найдем радиус сходимости полученного ряда, а именно:

.

Следовательно, ряд сходитсянаинтервале
.

Этот ряд сходитсяк функции при любых значениях , потому чтоналюбом промежутке
функция иее производныепоабсолютной величинеограничены числом .

Пример 4 . Рассмотрим функцию
.

Решение .


:

Нетрудно заметить, что производные четногопорядка
, а производные нечетногопорядка. Подставим найденные коэффициенты в ряд Маклорена иполучимразложение:

Найдем интервал сходимости данного ряда. По признаку Даламбера:

для любого . Следовательно, ряд сходитсянаинтервале
.

Этот ряд сходитсяк функции
, потому что все ее производные ограничены единицей.

Пример 5 .
.

Решение.

Найдем значение функции и ее производных при
:

Таким образом, коэффициенты данного ряда:
и
, следовательно:

Аналогично с предыдущим рядом область сходимости
. Ряд сходитсяк функции
, потому что все еепроизводные ограничены единицей.

Обратим внимание, что функция
нечетнаяи разложениев рядпо нечетнымстепеням, функция
– четная и разложение в ряд по четным степеням.

Пример 6 . Биномиальный ряд:
.

Решение .

Найдем значение функции и ее производных при
:

Отсюда видно, что:

Подставим эти значения коэффициентов в ряд Маклорена и получим разложение данной функции в степенной ряд:

Найдем радиус сходимости этого ряда:

Следовательно, ряд сходится на интервале
. В предельных точках при
и
ряд может сходится или нет в зависимости от показателя степени
.

Исследованный ряд сходится на интервале
к функции
, то есть суммаряда
при
.

Пример 7 . Разложим в ряд Маклорена функцию
.

Решение.

Для разложенияв ряд этой функции используем биномиальный ряд при
. Получим:

На основе свойства степенных рядов (степенной ряд можно интегрировать в области его сходимости) найдем интеграл от левой и правой частей данного ряда:

Найдем область сходимости данного ряда:
,

то есть областью сходимости данного ряда является интервал
. Определим сходимость ряда на концах интервала. При

. Этот ряд является гармоничным рядом, то есть расходится. При
получим числовой ряд с общим членом
.

Ряд по признаку Лейбница сходится. Таким образом, областью сходимости данного ряда является промежуток
.

16.2. Применение степенных рядов степеней в приближенных вычислениях

В приближенных вычислениях степенные ряды играют исключительно большую роль. С их помощью составлены таблицы тригонометрических функций, таблицы логарифмов, таблицы значений других функций, которые используют в разных областях знаний, например в теории вероятностей и математической статистике. Кроме того, разложениефункций в степенной ряд полезно для их теоретического исследования. Главным вопросом при использовании степенных рядов в приближенных вычислениях является вопрос оценки погрешности при замене суммы ряда суммой его первыхn членов.

Рассмотрим два случая:

функция разложена в знакочередующийся ряд;

функция разложена в знакопостоянный ряд.

Вычисление с помощью знакочередующихся рядов

Пусть функция
разложена в знакочередующийся степенной ряд. Тогда при вычислении этой функции для конкретного значения получаем числовой ряд, к которому можно применить признак Лейбница. В соответствии с этим признаком, если сумму ряда заменить суммой его первыхn членов, то абсолютная погрешность не превышает первого члена остатка этого ряда, то есть:
.

Пример 8 . Вычислить
с точностью до 0,0001.

Решение .

Будем использовать ряд Маклорена для
, подставив значение угла в радианах:

Если сравнить первый и второй члены ряда с заданной точностью, то: .

Третий член разложения:

меньше заданной точности вычисления. Следовательно, для вычисления
достаточно оставить два члена ряда, то есть

.

Таким образом
.

Пример 9 . Вычислить
с точностью 0,001.

Решение .

Будем использовать формулу биномиального ряда. Для этого запишем
в виде:
.

В этом выражении
,

Сравним каждый из членов ряда с точностью, которая задана. Видно, что
. Следовательно, для вычисления
достаточно оставить три члена ряда.

или
.

Вычисление с помощью знакоположительных рядов

Пример 10 . Вычислить число с точностью до 0,001.

Решение .

В ряд для функцїї
подставим
. Получим:

Оценим погрешность, которая возникает при замене суммы ряда суммой первых членов. Запишем очевидное неравенство:

то есть 2