Уравнения и неравенства содержащие модуль. Метод интервалов – универсальный метод решения неравенств с модулем




МОУ «Хвастовичская средняя школа»

«Метод интервалов для решения уравнений и неравенств с несколькими модулями»

Исследовательская работа по математике

Выполнила:

ученица 10«б» класса

Голышева Евгения

Руководитель:

учитель математики

Шапенская Е.Н.

Введение…………………………………………………………………………… … ….3 Глава 1.Методы решения задач с несколькими модулями…………………….............4 1.1.Определение модуля. Решение по определению.…………………….....................4 1.2 Решение уравнений с несколькими модулями, используя метод интервалов…...5 1.3. Задачи с несколькими модулями. Методы решения……………………………....7 1.4. Метод интервалов в задачах с модулями………………………………………......9 Глава 2. Уравнения и неравенства, содержащие модули………………………….….11 2.1 Решения уравнений с несколькими модулями, используя метод интервала..….11 2.2 Решения неравенств с несколькими модулями, используя метод интервала.…13 Заключение……………………………………………………………………………...15 Литература………………………………………………………………….……….….16

Введение

Понятие абсолютной величины является одной из важнейших характеристик числа как в области действительных, так и в области комплексных чисел. Это понятие широко применяется не только в различных разделах школьного курса математики, но и в курсах высшей математики, физики и технических наук, изучаемых в вузах. Задачи, связанные с абсолютными величинами, часто встречаются на математических олимпиадах, вступительных экзаменах в вузы и на ЕГЭ.

Тема: «Метод интервалов для решения уравнений и неравенств с несколькими модулями методом интервала».

Объективная область: математика.

Объект исследования: решение уравнений и неравенств с модулем.

Предмет исследования: метод интервалов для решения с несколькими модулями.

Цель исследования: выявить эффективность решения уравнений и неравенств с несколькими модулями методом интервала.

Гипотеза: если пользоваться методом интервалов для решения неравенств и уравнений с несколькими модулями, то можно значительно облегчить свою работу.

Методы работы: сбор информации и её анализ.

Задачи:

    Изучить литературу по данной теме.

    Рассмотреть решения неравенств и уравнений с несколькими модулями.

    Выявить наиболее эффективный способ решения.

Практическая направленность проекта:

Данную работу можно использовать в качестве учебного пособия для учащихся и методического пособия для учителя.

Глава 1.

1.1.Определение модуля. Решение по определению.

По определению, модуль, или абсолютная величина, неотрицательного числа a совпадает с самим числом, а модуль отрицательного числа равен противоположному числу, то есть – a:

Модуль числа всегда неотрицателен. Рассмотрим примеры.

Пример 1. Решить уравнение |–x| = –3.

Здесь разбор случаев устраивать не нужно, потому что абсолютная величина числа всегда неотрицательна, и значит, данное уравнение не имеет решений.

Запишем решение этих простейших уравнений в общем виде:

Пример 2. Решить уравнение |x| = 2 – x.

Решение. При x 0 имеем уравнение x = 2 – x, т.е. x = 1. Поскольку 1 0, x = 1 – корень исходного уравнения. Во втором случае (x

Ответ: x = 1.

Пример 3. Решить уравнение 3|x – 3| + x = –1.

Решение. Здесь разбиение на случаи определяется знаком выражения x – 3. При x – 3 ³ 0 имеем 3x – 9 + x = –1 Û x = 2. Но 2 – 3 0.

Ответ: уравнение корней не имеет.

Пример 4. Решить уравнение |x – 1| = 1 – x.

Решение. Поскольку 1 – x = – (x – 1), непосредственно из определения модуля следует, что уравнению удовлетворяют те и только те x, для которых x – 1 0. Это уравнение свелось к неравенству, и ответом является целый промежуток (луч).

Ответ: x 1.

1.2. Решение уравнений с модулем с помощью систем.

Разобранные ранее примеры позволяют сформулировать правила освобождения от знака модуля в уравнениях. Для уравнений вида |f(x)| = g(x) таких правил два:

1-е правило: |f(x)| = g(x) Û (1)
2-е правило: |f(x)| = g(x) Û (2)

Поясним используемые здесь обозначения. Фигурные скобки обозначают системы, а квадратные – совокупности.

Решения системы уравнений – это значения переменной, одновременно удовлетворяющие всем уравнениям системы.

Решениями совокупности уравнений являются все значения переменной, каждое из которых есть корень хотя бы одного из уравнений совокупности.

Два уравнения равносильны, если любое решение каждого из них является и решением другого, иначе говоря, если множества их решений совпадают.

Если уравнение содержит несколько модулей, то от них можно избавляться по очереди, пользуясь приведенными правилами. Но обычно есть более короткие пути. Мы познакомимся с ними позже, а сейчас рассмотрим решение самого простого из таких уравнений:

|f(x)| = |g(x)| Û

Эта равносильность следует из того очевидного факта, что если равны модули двух чисел, то сами числа либо равны, либо противоположны.

Пример 1 . Решить уравнение |x 2 – 7x + 11| = x + 1.
Решение. Избавимся от модуля двумя описанными выше способами:

1 способ: 2 способ:

Как видим, в обоих случаях приходится решать те же самые два квадратных уравнения, но в первом случае их сопровождают квадратные неравенства, а во втором – линейное. Поэтому второй способ для данного уравнения проще. Решая квадратные уравнения, находим корни первого , оба корня удовлетворяют неравенству . Дискриминант второго уравнения отрицателен, следовательно, уравнение корней не имеет.

Ответ: .
Пример 2 . Решить уравнение |x 2 – x – 6| = |2x 2 + x – 1|.

Решение. Мы уже знаем, что рассматривать (целых 4) варианта распределения знаков выражений под модулями здесь не нужно: это уравнение равносильно совокупности двух квадратных уравнений без каких-либо дополнительных неравенств: Которая равносильна: Первое уравнение совокупности решений не имеет (его дискриминант отрицателен), второе уравнение имеет два корня .

1.3. Задачи с несколькими модулями. Методы решения.

Последовательное раскрытие модулей.

Есть два основных подхода к решению уравнений и неравенств, содержащих несколько модулей. Можно назвать их "последовательным" и "параллельным". Сейчас познакомимся с первым из них.

Его идея в том, что сначала один из модулей изолируется в одной части уравнения (или неравенства) и раскрывается одним из описанных ранее методов. Затем то же самое повторяется с каждым из получившихся в результате уравнений с модулями и так продолжается, пока мы не избавимся ото всех модулей.

Пример1. Решить уравнение: +

Решение. Уединим второй модуль и раскроем его, пользуясь первым способом, то есть просто определением абсолютной величины:

К полученным двум уравнениям применяем второй способ освобождения от модуля:

Наконец, решаем получившиеся четыре линейных уравнения и отбираем те их корни, которые удовлетворяют соответствующим неравенствам. В результате остаются лишь два значения: x = –1 и .

Ответ: -1; .

Параллельное раскрытие модулей.

Можно снять сразу все модули в уравнении или неравенстве и выписать все возможные сочетания знаков подмодульных выражений. Если в уравнении n модулей, то вариантов будет 2 n , ибо каждое из n выражений, находящихся под модулем, при снятии модуля может получить один из двух знаков – плюс или минус. В принципе, нам надо решить все 2 n уравнений (или неравенств), освобожденных от модулей. Но их решения будут и решениями исходной задачи, только если они лежат в областях, где соответствующее уравнение (неравенство) совпадает с исходным. Эти области определяются знаками выражений под модулями. Следующее неравенство мы уже решали, так что вы можете сравнить разные подходы к решению.

Пример 2 .+
Решение.

Рассмотрим 4 возможных набора знаков выражений под модулями.

Лишь первый и третий из этих корней удовлетворяют соответствующим неравенствам, а значит, и исходному уравнению.

Ответ: -1; .

Аналогично можно решать любые задачи с несколькими модулями. Но, как всякий универсальный метод, этот способ решения далеко не всегда оптимален. Ниже мы увидим, как его можно усовершенствовать.

1.4. Метод интервалов в задачах с модулями

Присмотревшись внимательнее к условиям, задающим разные варианты распределения знаков подмодульных выражений в предыдущем решении, мы увидим, что одно их них, 1 – 3x

Представьте, что мы решаем уравнение, в которое входят три модуля от линейных выражений; например, |x – a| + |x – b| + |x – c| = m.

Первый модуль равен x – a при x ³ a и a – x при x b и x

Они образуют четыре промежутка. На каждом из них каждое из выражений под моду­лями сохраняет знак, следовательно, и уравнение в целом после раскрытия модулей имеет на каждом промежутке один и тот же вид. Итак, из 8 теоретически возможных вариан­тов раскрытия модулей нам оказалось достаточно только 4!

Так же можно решать любую задачу с несколькими модулями. Именно, числовая ось разбива­ется на промежутки знакопостоянства всех выражений, стоящих под модулями, а затем на каждом из них решается то уравнение или неравенство, в которое превращается данная задача на этом промежутке. В частности, если все выражения под модулями рациональны, то достаточно отметить на оси их корни, а также точки, где они не определены, то есть корни их знаменателей. Отмеченные точки и задают искомые промежутки знакопостоянства. Точно так же мы действуем при решении рациональных неравенств методом интервалов. И описанный нами метод решения задач с модулями имеет то же название.

Пример 1 . Решите уравнение .

Решение. Найдем нули функции , откуда . Решаем задачу на каждом интервале:

Итак, данное уравнение не имеет решений.

Пример 2 . Решите уравнение .

Решение. Найдем нули функции . Решаем задачу на каждом интервале:

1) (решений нет);

Пример 3 . Решите уравнение .

Решение. Выражения, стоящие под знаком абсолютной величины обращаются в ноль при . Соответственно нам нужно рассмотреть три случая:

2) - корень уравнения;

3) - корень данного уравнения.

Глава 2. Уравнения и неравенства, содержащие модули.

2.1 Решения уравнений с несколькими модулями, используя метод интервалов.

Пример 1.

Решите уравнение:

|х+2| = |х-1|+х-3

-(х+2) = -(х-1) + х-3

Х-2=-х+1+х-3

х=2 – не удовлетворяет

условию х

решений нет

2. Если -2≤х

х+2 = -(х-1)+х-3

удовлетворяет

условию -2

3. Если х≥1, то

Ответ: х=6

Пример 2.

Решите уравнение:

1) Находим нули подмодульных выражений

Нули подмодульных выражений разбивают числовую ось на несколько интервалов. Расставляем знаки подмодульных выражений на этих интервалах.

На каждом интервале раскрываем модули и решаем полученное уравнение. После нахождения корня проверяем, чтобы он принадлежал интервалу, на котором мы в данный момент работаем.

1. :

– подходит.

2. :

– не подходит.

3. :

подходит.

4. :

– не подходит. Ответ:

2.2 Решения неравенств с несколькими модулями, используя метод интервалов.

Пример 1.

Решите неравенство:

|х-1| + |х-3| 4


-(х-1) - (х-3) 4

2. Если 1≤х

х-1– (х-3) 4

24 – не верно

решений нет

3. Если х≥3, то

Ответ: хЄ (-∞;0) U (4;+∞)

Пример 2.

Решим неравенство

Решение. Точки и (корни выражений, стоящих под модулем) разбивают всю числовую ось на три интервала, на каждом из которых следует раскрыть модули.

1) При выполняется , и неравенство имеет вид , то есть . В этом случае ответ .

2) При выполняется , неравенство имеет вид , то есть . Это неравенство верно при любых значениях переменной , и, с учетом того, что мы решаем его на множестве , получаем ответ во втором случае .

3) При выполняется , неравенство преобразуется к , и решение в этом случае . Общее решение неравенства --- объединение трех полученных ответов.

Таким образом, для решения уравнений и неравенств, содержащих несколько модулей, удобно использовать метод интервалов. Для этого надо найти нули вех подмодульных функций, обозначить их на ОДЗ уравнения и неравенств.

Заключение

В последнее время в математике широко используются методы для упрощения решения задач, в частности метод интервала, позволяющий значительно ускорить расчеты. Поэтому исследование метода интервала для решения уравнений и неравенств с несколькими модулями актуально.

В процессе работы над темой «Решение уравнений и неравенств, содержащих неизвестную под знаком модуля методом интервала» я: изучила литературу по данному вопросу, познакомилась с алгебраическим и графическим подходом к решению уравнений и неравенств, содержащих неизвестную под знаком модуля, и пришла к выводу:

    В ряде случаев при решении уравнений с модулем, возможно, решать уравнения по правилам, а иногда удобнее воспользоваться методом интервала.

    При решении уравнений и неравенств, содержащих модуль, метод интервалов является более наглядным и сравнительно более простым.

В ходе написания исследовательской работы мною были раскрыты многие задачи, которые можно решить, используя метод интервала. Самой важной задачей является решение уравнений и неравенств с несколькими модулями.

В ходе проведённой мною работы по решению неравенств и уравнений с несколькими модулями, используя метод интервала, я обнаружила, что скорость решения задач увеличилась в два раза. Это позволяет значительно ускорить ход рабочего процесса и снизить временные затраты. Таким образом, моя гипотеза «если пользоваться методом интервалов для решения неравенств и уравнений с несколькими модулями, то можно значительно облегчить свою работу» подтвердилась. В процессе работы над исследованием я приобрела опыт при решении уравнений и неравенств с несколькими модулями. Думаю, что полученные мною знания позволят мне избежать ошибок при решении.

Литература

    http://padabum.com

  1. http://yukhym.com

    http://www.tutoronline.ru

    http://fizmat.by

    http://diffur.kemsu.ru

    http://solverbook.com

    Зеленский А.С., Панфилов. Решение уравнений и неравенств с модулем И.И. М.: Изд-во Факториал, 2009.- 112 с.

    Олехник С.Н. Потапов М.К.Уравнения и неравенства. Нестандартные методы решения. М.: Изд-во Факториал, 1997. - 219с.

    Севрюков П.Ф., Смоляков А.Н. Уравнения и неравенства с модулями и методика их решения. М.: Изд-во Просвещение 2005. - 112 с.

    Садовничий Ю.В. ЕГЭ. Практикум по математике. Решение уравнений и неравенств. Преобразование алгебраических выражений. М.: Изд-во Легион 2015 - 128 с.

    Шевкин А.В.Квадратные неравенства. Метод интервалов. М.: ООО «Русское слово – учебная книга», 2003. – 32 с.

Методы (правила) раскрытия неравенств с модулями заключаются в последовательном раскрытии модулей, при этом используют интервалы знакопостоянства подмодульных функций. В конечном варианте получают несколько неравенств из которых и находят интервалы или промежутки, которые удовлетворяют условию задачи.

Перейдем к решению распространенных на практике примеров.

Линейные неравенства с модулями

Под линейными понимаем уравнения, в которых переменная входит в уравнение линейно.

Пример 1. Найти решение неравенства

Решение:
Из условия задачи следует, что модули превращаются в ноль при x=-1 и x=-2. Эти точки разбивают числовую ось на интервалы

В каждом из этих интервалов решим заданное неравенство. Для этого прежде всего составляем графические рисунки областей знакопостоянства подмодульных функций. Их изображают в виде областей с знаками каждой из функций


или интервалов со знаками всех функций.

На первом интервале раскрываем модули

Умножаем обе части на минус единицу, при этом знак в неравенстве поменяется на противоположный. Если Вам до этого правила трудно привыкнуть, то можете перенести каждую из частей за знак, чтобы избавиться минуса. В конечном варианте Вы получите

Пересечением множества x>-3 с областью на которой решали уравнения будет интервал (-3;-2) . Для тех кому легче искать решения графически можете рисовать пересечение этих областей

Общие пересечение областей и будет решением. При строгом неровности края не включают. При нестрогое проверяют подстановкой.

На втором интервале получим

Сечением будет интервал (-2;-5/3). Графически решение будет иметь вид

На третьем интервале получим

Данное условие не дает решений на искомой областе.

Поскольку два найдены решения (-3;-2) и (-2;-5/3) граничат точкой x=-2 , то проверяем и ее.

Таким образом точка x=-2 является решением. Общее решение с учетом этого будет выглядеть (-3;5/3).

Пример 2. Найти решение неравенства
|x-2|-|x-3|>=|x-4|

Решение:
Нулями подмодульных функций будут точки x=2, x=3, x=4 . При значениях аргументов меньше этих точек подмодульные функции отрицательные, а при больших – положительные.

Точки разбивают действительную ось на четыре интервала. Раскрываем модули согласно интервалов знакопостоянства и решаем неравенства.

1) На первом интервале все подмодульные функции отрицательные, поэтому при раскрытии модулей меняем знак на противоположный.

Пересечением найденных значений x с рассматриваемым интервалом будет множество точек

2) На промежутке между точками x=2 и x=3 первая подмодульная функция положительная, вторая и третья – отрицательные. Раскрывая модули, получим

неравенство, которое в пересечении с интервалом, на котором решаем, дает одно решение – x=3.

3) На промежутке между точками x=3 и x=4 первая и вторая подмодульные функции положительные, а третья – отрицательная. На основе этого получим

Это условие показывает, что целый промежуток будет удовлетворять неравенство с модулями.

4) При значениях x>4 все функции знакоположительные. При раскрытии модулей их знак не меняем.

Найденное условие в пересечении с интервалом дает следующее множество решений

Поскольку неравенство решено на всех интервалах, то остается найти общее всех найденных значений x. Решением будут два интервала

На этом пример решен.

Пример 3. Найти решение неравенства
||x-1|-5|>3-2x

Решение:
Имеем неравенство с модулем от модуля. Такие неравенства раскрывают по мере вложенности модулей, начиная с тех, которые размещены глубже.

Подмодульная функция x-1 преобразуется в нуль в точке x=1 . При меньших значениях за 1 она отрицательная и положительная для x>1 . На основе этого раскрываем внутренний модуль и рассматриваем неравенство на каждом из интервалов.

Сначала рассмотрим интервал от минус бесконечности до единицы


Подмодульная функция равна нулю в точке x=-4 . При меньших значениях она знакоположительная, при больших – отрицательная. Раскроем модуль для x<-4:

В пересечении с областью, на которой рассматриваем получим множество решений

Следующим шагом раскрываем модуль на интервале (-4;1)

С учетом области раскрытия модуля получим интервал решений

ЗАПОМНИТЕ: если Вы получили в подобных неровностях с модулями два интервала, граничащих общей точкой, то, как правило, она также является решением.

Для этого стоит лишь провести проверку.

В данном случае подставляем точку x=-4.

Итак x=-4 является решением.
Раскроем внутренний модуль для x>1

Подмодульная функция отрицательная для x<6.
Раскрывая модуль получим

Данное условие в сечении с интервалом (1;6) дает пустое множество решений.

Для x>6 получим неравенство

Также решая получили пустое множество.
Учитывая все выше изложенное, единственным решением неравенства с модулями будет следующий интервал.

Неравенства с модулями, содержащие квадратные уравнения

Пример 4. Найти решение неравенства
|x^2+3x|>=2-x^2

Решение:
Подмодульная функция обращается в нуль в точках x=0, x=-3. Простой подстановкой минус единицы

устанавливаем, что она меньше нуля на интервале (-3;0) и положительная за его пределами.
Раскроем модуль в областях где подмодульная функция положительная

Осталось определить области, где квадратная функция положительная. Для этого определяем корни квадратного уравнения

Для удобства подставляем точку x=0, которая принадлежит интервалу (-2;1/2). Функция отрицательная в этом интервале, значит решением будут следующие множества x

Здесь скобками обозначены края областей с решениями, это сделано сознательно, учитывая следующее правило.

ЗАПОМНИТЕ: Если неравенство с модулями, или простое неравенство является строгим, то края найденных областей не являются решениями, если же неравенства нестроги ()то края являются решениями (обозначают квадратными скобками).

Это правило использует многие преподаватели: если задано строгое неравенство, а Вы при вычислениях запишете в решении квадратную скобку ([,]) – они автоматом посчитают это за неправильный ответ. Также при тестировании, если задано нестрогое неравенство с модулями, то среди решений ищите области с квадратными скобками.

На интервале (-3;0) раскрывая модуль меняем знак функции на противоположный

Учитывая область раскрытия неравенства, решение будет иметь вид

Вместе с предыдущей областью это даст два полуинтервала

Пример 5. Найти решение неравенства
9x^2-|x-3|>=9x-2

Решение:
Задано нестрогое неравенство, подмодульная функция которого равна нулю в точке x=3. При меньших значениях она отрицательная, при больших – положительная. Раскрываем модуль на интервале x<3.

Находим дискриминант уравнения

и корни

Подставляя точку ноль, выясняем, что на промежутке [-1/9;1] квадратичная функция отрицательна, следовательно промежуток является решением. Далее раскрываем модуль при x>3

Модулем числа называется само это число, если оно неотрицательное, или это же число с противоположным знаком, если оно отрицательное.

Например, модулем числа 6 является 6, модулем числа -6 тоже является 6.

То есть под модулем числа понимается абсолютная величина, абсолютное значение этого числа без учета его знака.

Обозначается так: |6|, |х |, |а | и т.д.

(Подробнее - в разделе «Модуль числа»).

Уравнения с модулем.

Пример 1 . Решить уравнение |10 х - 5| = 15.

Решение .

В соответствии с правилом, уравнение равносильно совокупности двух уравнений:

10х - 5 = 15
10х - 5 = -15

Решаем:

10х = 15 + 5 = 20
10х = -15 + 5 = -10

х = 20: 10
х = -10: 10

х = 2
х = -1

Ответ : х 1 = 2, х 2 = -1.

Пример 2 . Решить уравнение |2 х + 1| = х + 2.

Решение .

Поскольку модуль - число неотрицательное, то х + 2 ≥ 0. Соответственно:

х ≥ -2.

Составляем два уравнения:

2х + 1 = х + 2
2х + 1 = -(х + 2)

Решаем:

2х + 1 = х + 2
2х + 1 = -х - 2

2х - х = 2 - 1
2х + х = -2 - 1

х = 1
х = -1

Оба числа больше -2. Значит, оба являются корнями уравнения.

Ответ : х 1 = -1, х 2 = 1.

Пример 3 . Решить уравнение

|х + 3| - 1
————— = 4
х - 1

Решение .

Уравнение имеет смысл, если знаменатель не равен нулю - значит, если х ≠ 1. Учтем это условие. Наше первое действие простое - не просто освобождаемся от дроби, а преобрахуем ее так, чтобы получить модуль в чистом виде:

|х + 3| - 1 = 4 · (х - 1),

|х + 3| - 1 = 4х - 4,

|х + 3| = 4х - 4 + 1,

|х + 3| = 4х - 3.

Теперь у нас в левой части уравнения только выражение под модулем. Идем дальше.
Модуль числа есть неотрицательное число - то есть он должен быть больше нуля или равен нулю. Соответственно, решаем неравенство:

4х - 3 ≥ 0

4х ≥ 3

х ≥ 3/4

Таким образом, у нас появилось второе условие: корень уравнения должен быть не меньше 3/4.

В соответствии с правилом, составляем совокупность двух уравнений и решаем их:

х + 3 = 4х - 3
х + 3 = -(4х - 3)

х + 3 = 4х - 3
х + 3 = -4х + 3

х - 4х = -3 - 3
х + 4х = 3 - 3

х = 2
х = 0

Мы получили два ответа. Проверим, являются ли они корнями исходного уравнения.

У нас было два условия: корень уравнения не может быть равен 1, и он должен быть не меньше 3/4. То есть х ≠ 1, х ≥ 3/4. Обоим этим условиям соответствует только один из двух полученных ответов - число 2. Значит, только оно и является корнем исходного уравнения.

Ответ : х = 2.

Неравенства с модулем.

Пример 1 . Решить неравенство | х - 3| < 4

Решение .

Правило модуля гласит:

|а | = а , если а ≥ 0.

|а | = -а , если а < 0.

Модуль может иметь и неотрицательное, и отрицательное число. Значит, мы должны рассмотреть оба случая: х - 3 ≥ 0 и х - 3 < 0.

1) При х - 3 ≥ 0 наше исходное неравенство остается как есть, только без знака модуля:
х - 3 < 4.

2) При х - 3 < 0 в исходном неравенстве надо поставить знак минус перед всем подмодульным выражением:

-(х - 3) < 4.

Раскрыв скобки, получаем:

-х + 3 < 4.

Таким образом, от этих двух условий мы пришли к объединению двух систем неравенств:

х - 3 ≥ 0
х - 3 < 4

х - 3 < 0
-х + 3 < 4

Решим их:

х ≥ 3
х < 7

х < 3
х > -1

Итак, у нас в ответе объединение двух множеств:

3 ≤ х < 7 U -1 < х < 3.

Определяем наименьшее и наибольшее значения. Это -1 и 7. При этом х больше -1, но меньше 7.
Кроме того, х ≥ 3. Значит, решением неравенства является все множество чисел от -1 до 7, исключая эти крайние числа.

Ответ : -1 < х < 7.

Или: х ∈ (-1; 7).

Дополнения .

1) Есть более простой и короткий способ решения нашего неравенства - графический. Для этого надо нарисовать горизонтальную ось (рис.1).

Выражение |х - 3| < 4 означает, что расстояние от точки х до точки 3 меньше четырех единиц. Отмечаем на оси число 3 и отсчитываем влево и вправо от от него 4 деления. Слева мы придем к точке -1, справа - к точке 7. Таким образом, точки х мы просто увидели, не вычисляя их.

При этом, согласно условию неравенства, сами -1 и 7 не включены во множество решений. Таким образом, получаем ответ:

1 < х < 7.

2) Но есть еще одно решение, которое проще даже графического способа. Для этого наше неравенство надо представить в следующем виде:

4 < х - 3 < 4.

Ведь так оно и есть по правилу модуля. Неотрицательное число 4 и аналогичное отрицательное число -4 являются границами решения неравенства.

4 + 3 < х < 4 + 3

1 < х < 7.

Пример 2 . Решить неравенство | х - 2| ≥ 5

Решение .

Этот пример существенно отличается от предыдущего. Левая часть больше 5 либо равна 5. С геометрической точки зрения, решением неравенства являются все числа, которые от точки 2 отстоят на расстоянии 5 единиц и больше (рис.2). По графику видно, что это все числа, которые меньше или равны -3 и больше или равны 7. А значит, мы уже получили ответ.

Ответ : -3 ≥ х ≥ 7.

Попутно решим это же неравенство способом перестановки свободного члена влево и вправо с противоположным знаком:

5 ≥ х - 2 ≥ 5

5 + 2 ≥ х ≥ 5 + 2

Ответ тот же: -3 ≥ х ≥ 7.

Или: х ∈ [-3; 7]

Пример решен.

Пример 3 . Решить неравенство 6 х 2 - | х | - 2 ≤ 0

Решение .

Число х может быть и положительным числом, и отрицательным, и нулем. Поэтому нам надо учесть все три обстоятельства. Как вы знаете, они учитываются в двух неравенствах: х ≥ 0 и х < 0. При х ≥ 0 мы просто переписываем наше исходное неравенство как есть, только без знака модуля:

6х 2 - х - 2 ≤ 0.

Теперь о втором случае: если х < 0. Модулем отрицательного числа является это же число с противоположным знаком. То есть пишем число под модулем с обратным знаком и опять же освобождаемся от знака модуля:

6х 2 - (-х ) - 2 ≤ 0.

Раскрываем скобки:

6х 2 + х - 2 ≤ 0.

Таким образом, мы получили две системы уравнений:

6х 2 - х - 2 ≤ 0
х ≥ 0

6х 2 + х - 2 ≤ 0
х < 0

Надо решить неравенства в системах - а это значит, надо найти корни двух квадратных уравнений. Для этого приравняем левые части неравенств к нулю.

Начнем с первого:

6х 2 - х - 2 = 0.

Как решается квадратное уравнение - см. раздел «Квадратное уравнение». Мы же сразу назовем ответ:

х 1 = -1/2, х 2 = 2/3.

Из первой системы неравенств мы получаем, что решением исходного неравенства является все множество чисел от -1/2 до 2/3. Пишем объединение решений при х ≥ 0:
[-1/2; 2/3].

Теперь решим второе квадратное уравнение:

6х 2 + х - 2 = 0.

Его корни:

х 1 = -2/3, х 2 = 1/2.

Вывод: при х < 0 корнями исходного неравенства являются также все числа от -2/3 до 1/2.

Объединим два ответа и получим итоговый ответ: решением является все множество чисел от -2/3 до 2/3, включая и эти крайние числа.

Ответ : -2/3 ≤ х ≤ 2/3.

Или: х ∈ [-2/3; 2/3].

Чем больше человек понимает, тем сильнее в нем желание понимать

Фома Аквинский

Метод интервалов позволяет решать любые уравнения, содержащие модуль. Суть этого метода в том, чтобы разбить числовую ось на несколько участков (интервалов), причем разбить ось нужно именно нулями выражений, стоящих в модулях. Затем на каждом из получившихся участков всякое подмодульное выражение либо положительно, либо отрицательно. Поэтому каждый из модулей может быть раскрыт или со знаком минус, или со знаком плюс. После этих действий остается лишь решить каждое из полученных простых уравнений на рассматриваемом интервале и объединить полученные ответы.

Рассмотрим данный метод на конкретном примере.

|x + 1| + |2x – 4| – |x + 3| = 2x – 6.

1) Найдем нули выражений, стоящих в модулях. Для этого нужно приравняем их к нулю, и решить полученные уравнения.

x + 1 = 0 2x – 4 = 0 x + 3 = 0

x = -1 2x = 4 x = -3

2) Расставим получившиеся точки в нужном порядке на координатной прямой. Они разобьют всю ось на четыре участка.

3) Определим на каждом из получившихся участков знаки выражений, стоящих в модулях. Для этого подставляем в них любые числа с интересующих нас интервалов. Если результат вычислений – число положительное, то в таблице ставим «+», а если число отрицательное, то ставим «–». Это можно изобразить так:

4) Теперь будем решать уравнение на каждом из четырех интервалов, раскрывая модули с теми знаками, которые проставлены в таблице. Итак, рассмотрим первый интервал:

I интервал (-∞; -3). На нем все модули раскрываются со знаком «–». Получим следующее уравнение:

-(x + 1) – (2x – 4) – (-(x + 3)) = 2x – 6. Приведем подобные слагаемые, раскрыв предварительно скобки в полученном уравнении:

X – 1 – 2x + 4 + x + 3 = 2x – 6

Полученный ответ не входит в рассматриваемый интервал, поэтому в окончательный ответ писать его не надо.

II интервал [-3; -1). На этом интервале в таблице стоят знаки «–», «–», «+». Именно так и раскрываем модули исходного уравнения:

-(x + 1) – (2x – 4) – (x + 3) = 2x – 6. Упростим, раскрыв при этом скобки:

X – 1 – 2x + 4 – x – 3 = 2x – 6. Приведем в полученном уравнении подобные:

x = 6/5. Полученное число не принадлежит рассматриваемому интервалу, поэтому оно не является корнем исходного уравнения.

III интервал [-1; 2). Раскрываем модули исходного уравнения с теми знаками, которые стоят на рисунке в третьей колонке. Получаем:

(x + 1) – (2x – 4) – (x + 3) = 2x – 6. Избавимся от скобок, перенесем слагаемые, содержащие переменную x в левую часть уравнения, а не содержащие x в правую. Будем иметь:

x + 1 – 2x + 4 – x – 3 = 2x – 6

В рассматриваемый интервал число 2 не входит.

IV интервал }