Что такое симметрия в пространстве. Симметрия в пространстве




На данном уроке мы опишем виды симметрии в пространстве, познакомимся с понятием правильного многогранника.

Как и в планиметрии, в пространстве мы будем рассматривать симметрию относительно точки и относительно прямой, но дополнительно появится симметрия относительно плоскости.

Определение.

Точки А и называются симметричными относительно точки О (центра симметрии), если О - середина отрезка . Точка О симметрична сама себе.

Чтобы для заданной точки А получить симметричную ей точку относительно точки О, нужно провести прямую через точки А и О, отложить от точки О отрезок, равный ОА, и получить искомую точку (рисунок 1).

Рис. 1. Симметрия относительно точки

Аналогично точки В и симметричны относительно точки О, т. к. О - середина отрезка .

Так, задан закон, согласно которому каждая точка плоскости переходит в другую точку плоскости, и мы говорили, что при этом сохраняются любые расстояния, то есть .

Рассмотрим симметрию относительно прямой в пространстве.

Чтобы получить для заданной точки А симметричную точку относительно некоторой прямой а, нужно из точки А на прямую опустить перпендикуляр и отложить на нем равный отрезок (рисунок 2).

Рис. 2. Симметрия относительно прямой в пространстве

Определение.

Точки А и называются симметричными относительно прямой а (ось симметрии) если прямая а проходит через середину отрезка и перпендикулярна ему. Каждая точка прямой симметрична сама себе.

Определение.

Точки А и называются симметричными относительно плоскости (плоскость симметрии) если плоскость проходит через середину отрезка и перпендикулярна ему. Каждая точка плоскости симметрична сама себе (рисунок 3).

Рис. 3. Симметрия относительно плоскости

Некоторые геометрические фигуры могут иметь центр симметрии, ось симметрии, плоскость симметрии.

Определение.

Точка О называется центром симметрии фигуры если каждая точка фигуры симметрична относительно нее некоторой точке той же фигуры.

Например, в параллелограмме и параллелепипеде точка пересечения всех диагоналей является центром симметрии. Проиллюстрируем для параллелепипеда.

Рис. 4. Центр симметрии параллелепипеда

Так, при симметрии относительно точки О в параллелепипеде точка А переходит в точку , точка В - в точку и т. д., таким образом, параллелепипед переходит сам в себя.

Определение.

Прямая называется осью симметрии фигуры если каждая точка фигуры симметрична относительно нее некоторой точке той же фигуры.

Например, каждая диагональ ромба является для него осью симметрии, ромб переходит сам в себя при симметрии относительно любой из диагоналей.

Рассмотрим пример в пространстве - прямоугольный параллелепипед (боковые ребра перпендикулярны основаниям, в основаниях - равные прямоугольники). Такой параллелепипед имеет оси симметрии. Одна из них проходит через центр симметрии параллелепипеда (точку пересечения диагоналей) и центры верхнего и нижнего оснований.

Определение.

Плоскость называется плоскостью симметрии фигуры, если каждая точка фигуры симметрична относительно нее некоторой точке той же фигуры.

Например, прямоугольный параллелепипед имеет плоскости симметрии. Одна из них проходит через середины противоположных ребер верхнего и нижнего оснований (рисунок 5).

Рис. 5. Плоскость симметрии прямоугольного параллелепипеда

Элементы симметрии присущи правильным многогранникам.

Определение.

Выпуклый многогранник называется правильным, если все его грани - равные правильные многоугольники, а в каждой вершине сходится одинаковое число ребер.

Теорема.

Не существует правильного многогранника, гранями которого являются правильные n-угольники при .

Доказательство:

Рассмотрим случай, когда - правильный шестиугольник. Все его внутренние углы равны :

Тогда при внутренние углы будут и больше.

В каждой вершине многогранника сходятся не менее трех ребер, значит, в каждой вершине содержится не менее трех плоских углов. Их общая сумма (при условии, что каждый больше либо равен ) больше либо равна . Это противоречит утверждению: в выпуклом многограннике сумма плоских всех углов при каждой вершине меньше .

Теорема доказана.

Куб (рисунок 6):

Рис. 6. Куб

Куб составлен из шести квадратов; квадрат - это правильный многоугольник;

Каждая вершина - это вершина трех квадратов, например вершина А - общая для граней-квадратов ABCD, ;

Сумма всех плоских углов при каждой вершине составляет , т. к. состоит из трех прямых углов. Это меньше , что удовлетворяет понятию правильного многогранника;

Куб имеет центр симметрии - точка пересечения диагоналей;

Куб имеет оси симметрии, например прямые а и b (рисунок 6), где прямая а проходит через середины противоположных граней, а b - через середины противоположных ребер;

Куб имеет плоскости симметрии, например плоскость, которая проходит через прямые а и b.

2. Правильный тетраэдр (правильная треугольная пирамида, все ребра которой равны между собой):

Рис. 7. Правильный тетраэдр

Правильный тетраэдр составлен из четырех равносторонних треугольников;

Сумма всех плоских углов при каждой вершине составляет , т. к. правильный тетраэдр состоит из трех плоских углов по . Это меньше , что удовлетворяет понятию правильного многогранника;

Правильный тетраэдр имеет оси симметрии, они проходят через середины противоположных ребер, например прямая MN. Кроме того, MN - расстояние между скрещивающимися прямыми АВ и CD, MN перпендикулярно ребрам АВ и CD;

Правильный тетраэдр имеет плоскости симметрии, каждая проходит через ребро и середину противоположного ребра (рисунок 7);

Правильный тетраэдр не имеет центра симметрии.

3. Правильный октаэдр:

Состоит из восьми равносторонних треугольников;

В каждой вершине сходятся по четыре ребра;

Сумма всех плоских углов при каждой вершине составляет , т. к. правильный октаэдр состоит из четырех плоских углов по . Это меньше , что удовлетворяет понятию правильного многогранника.

4. Правильный икосаэдр:

Состоит из двадцати равносторонних треугольников;

В каждой вершине сходятся по пять ребер;

Сумма всех плоских углов при каждой вершине составляет , т. к. правильный икосаэдр состоит из пяти плоских углов по . Это меньше , что удовлетворяет понятию правильного многогранника.

5. Правильный додекаэдр:

Состоит из двенадцати правильных пятиугольников;

В каждой вершине сходятся по три ребра;

Сумма всех плоских углов при каждой вершине составляет . Это меньше , что удовлетворяет понятию правильного многогранника.

Итак, мы рассмотрели виды симметрии в пространстве и дали строгие определения. Также определили понятие правильного многогранника, рассмотрели примеры таких многогранников и их свойства.

Список литературы

  1. И. М. Смирнова, В. А. Смирнов. Геометрия. 10-11 класс: учебник для учащихся общеобразовательных учреждений (базовый и профильный уровни) / И. М. Смирнова, В. А. Смирнов. - 5-е изд., испр. и доп. - М.: Мнемозина, 2008. - 288 с.: ил.
  2. Шарыгин И. Ф. Геометрия. 10-11 класс: Учебник для общеобразовательных учебных заведений / Шарыгин И. Ф. - М.: Дрофа, 1999. - 208 с.: ил.
  3. Е. В. Потоскуев, Л. И. Звалич. Геометрия. 10 класс: Учебник для общеобразовательных учреждений с углубленным и профильным изучением математики /Е. В. Потоскуев, Л. И. Звалич. - 6-е изд., стереотип. - М.: Дрофа, 2008. - 233 с.: ил.
  1. Matemonline.com ().
  2. Fmclass.ru ().
  3. 5klass.net ().

Домашнее задание

  1. Укажите количество осей симметрии прямоугольного параллелепипеда;
  2. укажите количество осей симметрии правильной пятиугольной призмы;
  3. укажите количество плоскостей симметрии октаэдра;
  4. постройте пирамиду, у которой есть все элементы симметрии.





























Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Тип урока: комбинированный.

Цели урока:

  • Рассмотреть осевую, центральную и зеркальную симметрии как свойства некоторых геометрических фигур.
  • Научить строить симметричные точки и распознавать фигуры, обладающие осевой симметрией и центральной симметрией.
  • Совершенствовать навыки решения задач.

Задачи урока:

Оборудование урока:

  • Использование информационных технологий (презентация).
  • Рисунки.
  • Карточки с домашним заданием.

Ход урока

I. Организационный момент .

Сообщить тему урока, сформулировать цели урока.

II. Введение .

Что такое симметрия?

Выдающийся математик Герман Вейль высоко оценил роль симметрии в современной науке: "Симметрия, как бы широко или узко мы не понимали это слово, есть идея, с помощью которой человек пытался объяснить и создать порядок, красоту и совершенство".

Мы живем в очень красивом и гармоничном мире. Нас окружают предметы, которые радуют глаз. Например, бабочка, кленовый лист, снежинка. Посмотрите, как они прекрасны. Вы обращали на них внимание? Сегодня мы с вами прикоснемся к этому прекрасному математическому явлению – симметрии. Познакомимся с понятием осевой, центральной и зеркальной симметрий. Будем учиться строить и определять симметричные относительно оси, центра и плоскости фигуры.

Слово “симметрия” в переводе с греческого звучит как “гармония”, означая красоту, соразмерность, пропорциональность, одинаковость в расположении частей. Издавна человек использовал симметрию в архитектуре. Древним храмам, башням средневековых замков, современным зданиям она придает гармоничность, законченность.

В наиболее общем виде под "симметрией" в математике понимается такое преобразование пространства (плоскости), при котором каждая точка M переходит в другую точку M" относительно некоторой плоскости (или прямой) a, когда отрезок MM" является перпендикулярным плоскости (или прямой) a и делится ею пополам. Плоскость (прямая) a называется при этом плоскостью (или осью) симметрии. К фундаментальным понятиям симметрии относятся плоскость симметрии, ось симметрии, центр симметрии. Плоскостью симметрии P называется такая плоскость, которая делит фигуру на две зеркально равные части, расположенные друг относительно друга так, как предмет и его зеркальное отражение.

III. Основная часть. Виды симметрии.

Центральная симметрия

Симметрия относительно точки или центральная симметрия – это такое свойство геометрической фигуры, когда любой точке, расположенной по одну сторону центра симметрии, соответствует другая точка, расположенная по другую сторону центра. При этом точки находятся на отрезке прямой, проходящей через центр, делящий отрезок пополам.

Практическое задание .

  1. Даны точки А , В и М М относительно середины отрезка АВ .
  2. Какие из следующих букв имеют центр симметрии: А, О, М, Х, К?
  3. Имеют ли центр симметрии: а) отрезок; б) луч; в) пара пересекающихся прямых; г) квадрат?

Осевая симметрия

Симметрия относительно прямой (или осевая симметрия) – это такое свойство геометрической фигуры, когда любой точке, расположенной по одну сторону прямой, всегда будет соответствовать точка, расположенная по другую сторону прямой, а отрезки, соединяющие эти точки, будут перпендикулярны оси симметрии и делятся ею пополам.

Практическое задание .

  1. Даны две точки А и В , симметричные относительно некоторой прямой, и точка М . Постройте точку, симметричную точке М относительно той же прямой.
  2. Какие из следующих букв имеют ось симметрии: А, Б, Г, Е, О?
  3. Сколько осей симметрии имеет: а) отрезок; б) прямая; в) луч?
  4. Сколько осей симметрии имеет рисунок? (см. рис. 1)

Зеркальная симметрия

Точки А и В называются симметричными относительно плоскости α (плоскость симметрии), если плоскость α проходит через середину отрезка АВ и перпендикулярна к этому отрезку. Каждая точка плоскости α считается симметричной сама себе.

Практическое задание .

  1. Найдите координаты точек, в которые переходят точки А (0; 1; 2), В (3; -1; 4), С (1; 0; -2) при: а) центральной симметрии относительно начала координат; б) осевой симметрии относительно координатных осей; в)зеркальной симметрии относительно координатных плоскостей.
  2. В правую или левую перчатку переходит правая перчатка при зеркальной симметрии? осевой симметрии? центральной симметрии?
  3. На рисунке показано, как цифра 4 отражается в двух зеркалах. Что будет видно на месте знака вопроса, если то же самое сделать с цифрой 5? (см. рис. 2)
  4. На рисунке показано, как слово КЕНГУРУ отражается в двух зеркалах. Что получится, если то же самое проделать с числом 2011? (см. рис. 3)


Рис. 2

Это интересно.

Симметрия в живой природе.

Почти все живые существа построены по законам симметрии, недаром в переводе с греческого слово «симметрия» означает «соразмерность».

Среди цветов, например, наблюдается поворотная симметрия. Многие цветы можно повернуть так, что каждый лепесток займет положение соседнего, цветок совместится с самим собой. Минимальный угол такого поворота для различных цветов неодинаков. Для ириса он равен 120°, для колокольчика – 72°, для нарцисса – 60°.

В расположении листьев на стеблях растений наблюдается винтовая симметрия. Располагаясь винтом по стеблю, листья как бы раскидываются в разные стороны и не заслоняют друг друга от света, хотя сами листья тоже имеют ось симметрии. Рассматривая общий план строения какого-либо животного, мы замечаем обычно известную правильность в расположении частей тела или органов, которые повторяются вокруг некоторой оси или занимают одно и то же положение по отношению к некоторой плоскости. Эту правильность называют симметрией тела. Явления симметрии столь широко распространены в животном мире, что весьма трудно указать группу, в которой никакой симметрии тела подметить нельзя. Симметрией обладают и маленькие насекомые, и крупные животные.

Симметрия в неживой природе.

Среди бесконечного разнообразия форм неживой природы в изобилии встречаются такие совершенные образы, чей вид неизменно привлекает наше внимание. Наблюдая за красотой природы, можно заметить, что при отражении предметов в лужах, озерах проявляется зеркальная симметрия (см. рис. 4).

В мир неживой природы очарование симметрии вносят кристаллы. Каждая снежинка – это маленький кристалл замерзшей воды. Форма снежинок может быть очень разнообразной, но все они обладают поворотной симметрией и, кроме того, зеркальной симметрией.

Нельзя не увидеть симметрию и в ограненных драгоценных камнях. Многие гранильщики стараются придать бриллиантам форму тетраэдра, куба, октаэдра или икосаэдра. Так как гранат имеет те же элементы что и куб, он высоко ценится знатоками драгоценных камней. Художественные изделия из гранатов были обнаружены в могилах Древнего Египта, относящихся еще к додинастическому периоду (свыше двух тысячелетий до н.э.) (см. рис. 5).

В коллекциях Эрмитажа особым вниманием пользуются золотые украшения древних скифов. Необычайно тонка художественная работа золотых венков, диадем, дерева и украшенных драгоценными красно-фиолетовыми гранатами.

Одним из самых наглядных использований законов симметрии в жизни служат строения архитектуры. Это то, что чаще всего мы можем увидеть. В архитектуре оси симметрии используются как средства выражения архитектурного замысла (см. рис. 6). В большинстве случаев симметричны относительно оси или центра узоры на коврах, тканях, комнатных обоях.

Еще одним примером использования человеком симметрии в своей практике – это техника. В технике оси симметрии наиболее четко обозначаются там, где требуется оценить отклонение от нулевого положения, например на руле грузовика или на штурвале корабля. Или одно из важнейших изобретений человечества, имеющих центр симметрии, является колесо, также центр симметрии есть у пропеллера и других технических средств.

«Посмотри в зеркало!»

Должны ли мы считать, что самих себя видим только в «зеркальном отражении»? Или в лучшем случае лишь на фото и кинопленке можем узнать, как мы выглядим «на самом деле»? Конечно, нет: достаточно зеркальное изображение вторично отразить в зеркале, чтобы увидеть свое истинное лицо. На помощь приходят трельяжи. Они имеют одно большое главное зеркало в центре и два меньших зеркала по сторонам. Если такое боковое зеркало поставить под прямым углом к среднему, то можно увидеть себя именно в том виде, в каком вас видят окружающие. Зажмурьте левый глаз, и ваше отражение во втором зеркале повторит ваше движение левым глазом. Перед трельяжем вы можете выбирать, хотите ли вы увидеть себя в зеркальном или в непосредственном изображении.

Легко вообразить, какая бы царила на Земле неразбериха, если бы симметрия в природе была нарушена!

Рис. 4 Рис. 5 Рис. 6

IV. Физкультминутка.

  • «Ленивые восьмерки » – активизируют структуры, обеспечивающие запоминание, повышают устойчивость внимания.
    Нарисовать в воздухе в горизонтальной плоскости цифру восемь по три раза сначала одной рукой, затем сразу обеими руками.
  • «Симметричные рисунки » – улучшают зрительно-моторную координацию, облегчают процесс письма.
    Нарисовать в воздухе обеими руками симметричные рисунки.

V. Самостоятельная работа проверочного характера.

Ι вариант

ΙΙ вариант

  1. В прямоугольнике MPKH О – точка пересечения диагоналей, РА и BH – перпендикуляры, проведенные из вершин Р и H к прямой МК. Известно, что МА = ОВ. Найдите угол РОМ.
  2. В ромбе MPKH диагонали пересекаются в точке О. На сторонах МК, KH, PH взяты точки А, В, С соответственно, АК = КВ = РС. Докажите, что ОА = ОВ, и найдите сумму углов РОС и МОА.
  3. Постройте квадрат по данной диагонали так, чтобы две противоположные вершины этого квадрата лежали на разных сторонах данного острого угла.

VI. Подведение итогов урока. Оценивание.

  • С какими видами симметрии вы познакомились на уроке?
  • Какие две точки называются симметричными относительно данной прямой?
  • Какая фигура называется симметричной относительно данной прямой?
  • Какие две точки называются симметричными относительно данной точки?
  • Какая фигура называется симметричной относительно данной точки?
  • Что такое зеркальная симметрия?
  • Приведите примеры фигур, обладающих: а) осевой симметрией; б) центральной симметрией; в) и осевой, и центральной симметрией.
  • Приведите примеры симметрии в живой и неживой природе.

VII. Домашнее задание.

1. Индивидуальное: достройте, применив осевую симметрию (см. рис. 7).


Рис. 7

2. Постройте фигуру, симметричную данной относительно: а) точки; б) прямой (см. рис. 8, 9).

Рис. 8 Рис. 9

3. Творческое задание: «В мире животных». Нарисуйте представителя из мира животных и покажите ось симметрии.

VIII. Рефлексия.

  • Что понравилось на уроке?
  • Какой материал был наиболее интересен?
  • Какие трудности возникли при выполнении того или иного задания?
  • Что бы вы изменили в ходе урока?

§ 1 Что такое симметрия

Цитатой этого урока послужит высказывание известного ученого, создателя кибернетики Норберта Винера, которое очень точно выражает все то, о чем сегодня пойдет речь.

«Высшее назначение математики - находить красоту, гармонию и порядок в хаосе, который нас окружает».

Симметрия один из законов обеспечивающих гармонию вселенной, о ней мы и поведем сегодня речь и расширим те понятия, которые были введены на уроках планиметрии.

В повседневном языке слово симметрия употребляется в двух значениях. В одном смысле симметричное означает нечто, обладающее хорошим соотношением пропорций, уравновешенное, а симметрия обозначает тот вид согласованности отдельных частей, который объединяет их в единое целое. Красота тесно связана с симметрией. Об этом говорит, например, в своей книге о пропорциях Поликлет - ваятель, скульптуры которого служили предметом восхищения древних за их гармоничное совершенство. Образ весов является естественным связующим звеном, которое подводит ко второму смыслу слова симметрия, употребляемому в наше время: зеркальная симметрия - симметрия левого и правого, столь заметная в строении тел у высших животных и человека.

Зеркальная симметрия выступает как частный случай геометрического понятия симметрии, относящегося к таким операциям, как отражение или вращение.

Пифагорейцы считали наиболее совершенными геометрическими фигурами на плоскости — окружность, а в пространстве - сферу в силу их полной поворотной симметрии.

Симметрия в широком или узком смысле является той идеей, посредством которой человек на протяжении веков пытается постичь и создать порядок, красоту и совершенство. Так свойства пространства и времени ведут к симметрии, к закономерности в природе как проявлению ее гармонии

§ 2 Симметрия относительно точки

В планиметрии мы рассматривали фигуры, симметричные относительно точки и относительно прямой. В стереометрии рассматривают симметрию относительно точки, прямой и плоскости.

Точки А и А1 называются симметричными относительно точки О (центра симметрии), если О - середина отрезка АА1. Точка О считается симметричной самой себе. Примером центральной симметрии может послужить цветок или узор

§ 3 Симметрия относительно прямой

Точки А и А1 называются симметричными относительно прямой а (ось симметрии), если прямая а проходит через середину отрезка АА1 и перпендикулярна этому отрезку. Каждая точка прямой а считается симметричной самой себе.

Примером такой симметрии могут послужить не только прелестные бабочки, но и даже целые здания, такие как

корпус Московского государственного университета им. Ломоносова,

Храм Христа Спасителя,

мавзолей- мечеть Тадж-Махал.

§ 4 Симметрия относительно плоскости

В пространственной геометрии добавим симметрию относительно плоскости.

Точки А и А1 называются симметричными относительно плоскости α (плоскость симметрии), если плоскость α проходит через середину отрезка АА1 и перпендикулярна к этому отрезку. Каждая точка плоскости α считается симметричной самой себе.

Изучая стереометрию, можно также говорить о центре, оси и плоскости симметрии фигуры.

Точка (прямая, плоскость) называется центром (осью, плоскостью) симметрии фигуры, если каждая точка фигуры симметрична относительно нее некоторой точке той же фигуры. Если фигура имеет центр (ось, плоскость симметрии), то говорят, что она обладает центральной (осевой, зеркальной) симметрией.

На рисунках вы сейчас можете увидеть прямоугольный параллелепипед, а так же его центр симметрии, ось симметрии, плоскость симметрии.

Параллелепипед, не являющийся прямоугольным, но являющийся прямой призмой, имеет плоскость (или плоскости, если его основание - ромб), ось и центр симметрии.

§ 5 Асимметрия

Фигура может иметь один или несколько центров симметрии (осей, плоскостей симметрии). Например, куб имеет только один центр симметрии и несколько осей и плоскостей симметрии. Существуют фигуры, имеющие бесконечно много центров, осей или плоскостей симметрии. Простейшими из таких фигур являются прямая и плоскость. И наоборот, существуют такие фигуры, которые не имеют центров, осей или плоскостей симметрии. В этом случае говорят еще об одном математическом понятии как асимметрия, которое обозначает отсутствие симметрии. Сегодня биологи и психологи, химики и врачи пытаются сообща справиться с загадками симметрии и разгадать тайны левого и правого. Каждый день мы смотрим в зеркало, но редко задумываемся о том, что в отражении правая рука превращается в левую. Зачем природа создала и дублировала некоторые функции полушарий, руки, ноги, глаза, а рот у человека один. Удивительно при всей нашей симметрии мы ассиметричны. Современные компьютерные технологии позволяют увидеть, каким бы был человек только из левых половин лица или из правых. Результат ошеломляет большинство увидевших получившиеся портреты. Право и левополушарные лица оказываются непохожими между собой. Оглянитесь вокруг, может быть, и вы увидите симметрию и асимметрию вокруг и восхититесь ею.

  1. Геометрия. 10 – 11 классы: учебник для общеобразоват. учреждений: базовый и профил. уровни / [ Л. С. Атанасян, В. Ф. Бутузов, С.Б. Кадомцев и др.]. – 22-е изд. – М. : Просвещение, 2013. – 255 с. : ил. – (МГУ - в школе)
  2. Учебно – методическое пособие в помощь школьному учителю Составитель Яровенко В.А. Поурочные разработки по геометрии к учебному комплекту Л. С. Атанасяна и др. (М. : Просвещение) 10 класс
  3. Рабинович Е. М. Задачи и упражнения на готовых чертежах. 10 – 11 классы. Геометрия. – М. : Илекса, 2006 . – 80 с.
  4. М. Я Выгодский Справочник по элементарной математике М. : АСТ Астрель, 2006. - 509с.
  5. Аванта+. Энциклопедия для детей. Том 11. Математика 2-е изд., перераб. - М.: Мир энциклопедий Аванта+: Астрель 2007. - 621 с. Ред. коллегия: М. Аксёнова, В. Володин, М. Самсонов

На протяжении веков симметрия остается предметом, который очаровывает философов, астрономов, математиков, художников, архитекторов и физиков. Древние греки были совершенно одержимы ею – и даже сегодня мы, как правило, сталкиваемся с симметрией во всем от расположения мебели до стрижки волос.

Просто имейте в виду: как только вы осознаете это, вы, вероятно, испытаете непреодолимое желание искать симметрию во всем, что видите.

(Всего 10 фото)

Спонсор поста: Программа для скачивания музыки ВКонтакте : Новая версия программы «Лови в контакте» предоставляет возможность легко и быстро скачивать музыку и видео, размещенные пользователями, со страниц самой известной социальной сети vkontakte.ru.

1. Брокколи романеско

Возможно увидев брокколи романеско в магазине, вы подумали, что это ещё один образец генномодифицированного продукта. Но на самом деле это ещё один пример фрактальной симметрии природы. Каждое соцветие брокколи имеет рисунок логарифмической спирали. Романеско внешне похожа на брокколи, а по вкусу и консистенции – на цветную капусту. Она богата каротиноидами, а также витаминами С и К, что делает её не только красивой, но и здоровой пищей.

На протяжении тысяч лет люди удивлялись идеальной гексагональной форме сот и спрашивали себя, как пчелы могут инстинктивно создать форму, которую люди могут воспроизвести только с помощью циркуля и линейки. Как и почему пчелы имеют страстное желание создавать шестиугольники? Математики считают, что это идеальная форма, которая позволяет им хранить максимально возможное количество меда, используя минимальное количество воска. В любом случае, все это продукт природы, и это чертовски впечатляет.

3. Подсолнухи

Подсолнухи могут похвастаться радиальной симметрией и интересным типом симметрии, известной как последовательность Фибоначчи. Последовательность Фибоначчи: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144 и т.д. (каждое число определяется суммой двух предыдущих чисел). Если бы мы не спешили и подсчитали количество семян в подсолнухе, то мы бы обнаружили, что количество спиралей растет по принципам последовательности Фибоначчи. В природе есть очень много растений (в том числе и брокколи романеско), лепестки, семена и листья которых отвечают этой последовательности, поэтому так трудно найти клевер с четырьмя листочками.

Но почему подсолнечник и другие растения соблюдают математические правила? Как и шестиугольники в улье, все это – вопрос эффективности.

4. Раковина Наутилуса

Помимо растений, некоторые животные, например Наутилус, отвечают последовательности Фибоначчи. Раковина Наутилуса закручивается в «спираль Фибоначчи». Раковина пытается поддерживать одну и ту же пропорциональную форму, что позволяет ей сохранять её на протяжении всей жизни (в отличие от людей, которые меняют пропорции на протяжении жизни). Не все Наутилусы имеют раковину, выстроенную по правилам Фибоначчи, но все они отвечают логарифмической спирали.

Прежде, чем вы позавидуете моллюскам-математикам, вспомните, что они не делают этого специально, просто такая форма наиболее рациональна для них.

5. Животные

Большинство животных имеют двустороннюю симметрию, что означает, что они могут быть разделены на две одинаковых половинки. Даже люди обладают двусторонней симметрией, и некоторые ученые полагают, что симметрия человека является наиболее важным фактором, который влияет на восприятие нашей красоты. Другими словами, если у вас однобокое лицо, то остается надеяться, что это компенсируется другими хорошими качествами.

Некоторые доходят до полной симметрии в стремлении привлечь партнера, например павлин. Дарвин был положительно раздражен этой птицей, и написал в письме, что «Вид перьев в хвосте павлина, всякий раз, когда я смотрю на него, делает меня больным!» Дарвину, хвост казался обременительным и не имеющим эволюционного смысла, так как он не соответствовал его теории «выживания наиболее приспособленных». Он был в ярости, пока не придумал теорию полового отбора, которая утверждает, что животные развивают определенные функции, чтобы увеличить свои шансы на спаривание. Поэтому павлины имеют различные приспособления для привлечения партнерши.

Есть около 5000 типов пауков, и все они создают почти идеальное круговое полотно с радиальными поддерживающими нитями почти на равном расстоянии и спиральной тканью для ловли добычи. Ученые не уверены, почему пауки так любят геометрию, так как испытания показали, что круглое полотно не заманит еду лучше, чем полотно неправильной формы. Ученые предполагают, что радиальная симметрия равномерно распределяет силу удара, когда жертва попадает в сети, в результате чего получается меньше разрывов.


Дайте паре обманщиков доску, косилки и спасительную темноту, и вы увидите, что люди тоже создают симметричные формы. Из-за того, что круги на полях отличаются сложностью дизайна и невероятной симметрией, даже после того, как создатели кругов признались и продемонстрировали свое мастерство, многие люди до сих пор верят, что это сделали космические пришельцы.

По мере усложнения кругов все больше проясняется их искусственное происхождение. Нелогично предполагать, что пришельцы будут делать свои сообщения все более трудными, когда мы не смогли расшифровать даже первые из них.

Независимо от того, как они появились, круги на полях приятно рассматривать, главным образом потому, что их геометрия впечатляет.


Даже такие крошечные образования, как снежинки, регулируются законами симметрии, так как большинство снежинок имеет шестигранную симметрию. Это происходит в частности из-за того, как молекулы воды выстраиваются, когда затвердевают (кристаллизуются). Молекулы воды приобретают твердое состояние, образуя слабые водородные связи, они выравниваются в упорядоченном расположении, которое уравновешивает силы притяжения и отталкивания, формируя гексагональную форму снежинки. Но при этом каждая снежинка симметрична, но ни одна снежинка не похожа на другую. Это происходит потому, что падая с неба, каждая снежинка испытывает уникальные атмосферные условия, которые заставляют её кристаллы располагаться определенным образом.

9. Галактика Млечный Путь

Как мы уже видели, симметрия и математические модели существуют почти везде, но разве эти законы природы ограничиваются нашей планетой? Очевидно, нет. Недавно открыли новую секцию на краю Галактики Млечного Пути, и астрономы считают, что галактика представляет собой почти идеальное зеркальное отражение себя.

10. Симметрия Солнца-Луны

Если учесть, что Солнце имеет диаметр 1,4 млн. км, а Луна – 3474 км, кажется почти невозможным то, что Луна может блокировать солнечный свет и обеспечивать нам около пяти солнечных затмений каждые два года. Как это получается? Так совпало, что наряду с тем, что ширина Солнца примерно в 400 раз больше, чем Луна, Солнце также в 400 раз дальше. Симметрия обеспечивает то, что Солнце и Луна получаются одного размера, если смотреть с Земли, и поэтому Луна может закрыть Солнце. Конечно, расстояние от Земли до Солнца может увеличиваться, поэтому иногда мы видим кольцевые и неполные затмения. Но каждые один-два года происходит точное выравнивание, и мы становимся свидетелями захватывающих событий, известных как полное солнечное затмение. Астрономы не знают, как часто встречается такая симметрия среди других планет, но они думают, что это довольно редкое явление. Тем не менее, мы не должны предполагать, что мы особенные, так как все это дело случая. Например, каждый год Луна отдаляется примерно на 4 см от Земли, это означает, что миллиарды лет назад каждое солнечное затмение было бы полным затмением. Если и дальше все пойдет так, то полные затмения, в конце концов, исчезнут, и это будет сопровождаться исчезновением кольцевых затмений. Получается, что мы просто находимся в нужном месте в нужное время, чтобы увидеть это явление.