Межзвездный газ по физике. Молекулярные облака и межзвёздный газ




По всей вероятности, первыми внеземными объектами, которые привлекли внимание человека еще в глубокой древности, были Солнце и Луна. Вопреки известной шутке о том, что Луна полезнее Солнца потому, что светит ночью, а днем и без того светло, первостепенная роль Солнца была отмечена людьми еще в первобытную эпоху, и это нашло отражение в мифах и легендах почти всех народов. Вопрос о том, какова природа звезд, возник, очевидно, гораздо позже. Заметив блуждающие звезды - планеты, люди, быть может, впервые сделали попытку проанализировать взаимосвязь различных явлений, хотя возникшая таким путем астрология подменила знания суевериями. Любопытно, что астрономия, одна из наиболее обобщающих наук о природе, свои первые шаги совершала по зыбкой почве заблуждений, отголоски которых дошли даже до наших дней. Причину этих заблуждений легко понять, если учесть, что первый этап развития науки о небе в буквальном смысле слова был основан на созерцании и абстрактном мышлении, когда практически отсутствовали какие-либо астрономические инструменты. Тем более поразительно, что этот этап блестяще завершился, бессмертным творением Коперника - первой и важнейшей революцией в астрономии. До этого казалось очевидным, что наблюдаемое, видимое совпадает с действительным, реально существующим, копирует его. Коперник впервые доказал, что действительное может радикально и принципиально отличаться от видимого. Следующий столь же решительный шаг сделан великим Галилеем, сумевшим увидеть то, что не заметил даже такой тонкий наблюдатель, как Аристотель. Именно Галилей впервые понял, что, вопреки очевидному, процесс движения тела вовсе не означает постоянного воздействия на него другого тела. Открытый Галилеем принцип инерции позволил затем Ньютону сформулировать законы динамики, которые послужили фундаментом современной физики. Если самое гениальное свое открытие Галилей сделал в области механики - и это в дальнейшем принесло огромную пользу астрономии, - то непосредственно наука о небе обязана ему началом новой эпохи в своем развитии - эпохи телескопических наблюдений. Применение телескопа в астрономии прежде всего неизмеримо увеличило число объектов, доступных исследованиям. Еще Джордано Бруно говорил о бесчисленных мирах солнц. Он оказался прав: звезды - самые важные объекты во Вселенной, в них сконцентрировано почти все космическое вещество. Но звезды - это не просто резервуары для хранения массы и энергии. Они являются термоядерными котлами, где происходит процесс образования атомов тяжелых элементов, без которых невозможны были бы наиболее сложные этапы эволюции материи, приведшие на Земле к возникновению флоры, фауны, человека и наконец человеческой цивилизации. По мере совершенствования телескопов и методов регистрации электромагнитного излучения астрономы получают возможность проникать во все более удаленные уголки космического пространства. И это не только расширяет геометрический горизонт известного нам мира: более далекие объекты отличаются и по возрасту, так что в известной нам части Вселенной, которую принято называть Метагалактикой, содержится богатая информация об истории развития, иными словами, об эволюции Вселенной. Современная астрономия обогатилась учением о развитии миров, подобно тому как биология в свое время обогатилась учением Дарвина. Это уже более высокая ступень перехода -от видимого к действительному, ибо по тому, что видно сегодня, мы познаем суть явлений в далеком прошлом и можем предвидеть будущее! В последнее время в астрономии наметился еще один важный переход от наблюдаемого к действительному. Само по себе наблюдаемое теперь оказалось достоянием многих ученых-астрономов, вооруженных самой современной техникой, которая использует малейшие возможности, скрытые в тайниках физических законов и позволяющие вырывать у природы ее тайны. Но проникновение в неведомую еще нам реальность - это не просто представление о том, что вокруг чего обращается, и даже не то, что является причиной движения или как выглядели те или иные тела в незапамятные времена, а нечто гораздо большее. Это – познание свойств пространства и времени в целом, в масштабах, не доступных нашему непосредственному восприятию и созерцанию. Пространство между звёздами, за исключением отдельных туманностей, выглядит пустым. На самом же деле всё межзвёздное пространство заполнено веществом. К такому заключению учёные пришли после того, как в начале XX в. швейцарский астроном Роберт Трюмплер открыл поглощение (ослабление) света звёзд на пути к земному наблюдателю. Причём степень его ослабления зависит от цвета звезды. Свет от голубых звёзд поглощается более интенсивно, чем от красных. Таким образом, если звезда излучает в голубых и красных лучах одинаковое количество энергии, то в результате поглощения света голубые лучи ослабляются сильнее красных и с Земли звезда кажется красноватой. Вещество, поглощающее свет, распределено в пространстве не равномерно, а имеет клочковатую структуру и концентрируется к Млечному Пути. Тёмные туманности, такие, как Угольный Мешок и Конская Голова, являются местом повышенной плотности поглощающего межзвёздного вещества. А состоит оно из мельчайших частиц - пылинок. Физические свойства пылинок к настоящему времени изучены достаточно хорошо. Помимо пыли между звёздами имеется большое количество невидимого холодного газа. Масса его почти в сто раз превосходит массу пыли. Как же стало известно о существовании этого газа? Оказалось, что атомы водорода излучают радиоволны с длиной волны 21 см. Большую часть информации о межзвёздном веществе получают с помощью радиотелескопов. Так были открыты облака атомарного нейтрального водорода. Типичное облако атомарного нейтрального водорода имеет температуру около 70 К (-200 °С) и невысокую плотность (несколько десятков атомов в кубическом сантиметре пространства). Хотя такая среда и считается облаком, для землянина это глубокий вакуум, в миллиард раз разреженнее, чем вакуум, создаваемый, например, в кинескопе телевизора. Размеры облаков водорода - от 10 до 100 пк (для сравнения: звёзды в среднем находятся друг от друга на расстоянии 1 пк). Впоследствии были обнаружены ещё более холодные и плотные облака молекулярного водорода, совершенно непрозрачные для видимого света. Именно в них сосредоточена большая часть холодного межзвёздного газа и пыли. По размерам эти облака примерно такие же, как и области атомарного водорода, но плотность их в сотни и тысячи раз выше. Поэтому в больших молекулярных облаках может содержаться огромная масса вещества, достигающая сотен тысяч и даже миллионов масс Солнца. В молекулярных облаках, состоящих в основном из водорода, присутствуют и многие более сложные молекулы, в том числе простейшие органические соединения. Некоторая часть межзвёздного вещества нагрета до очень высоких температур и «светится» в ультрафиолетовых и рентгеновских лучах. В рентгеновском диапазоне излучает самый горячий газ, имеющий температуру около миллиона градусов. Это - короналъный газ, названный так по аналогии с разогретым газом в солнечной короне. Корональный газ отличается очень низкой плотностью: примерно один атом на кубический дециметр пространства. Горячий разреженный газ образуется в результате мощных взрывов - вспышек сверхновых звёзд. От места взрыва в межзвёздном газе распространяется ударная волна и нагревает газ до высокой температуры, при которой он становится источником рентгеновского излучения. Корональный газ обнаружен также в пространстве между галактиками. Итак, основным компонентом межзвёздной среды является газ, состоящий из атомов и молекул. Он перемешан с пылью, содержащей около 1% массы межзвёздного вещества, и пронизывается быстрыми потоками элементарных частиц - космическими лучами - и электромагнитным излучением, которые также можно считать составляющими межзвёздной среды. Кроме того, межзвёздная среда оказалась слегка намагниченной. Магнитные поля связаны с облаками межзвёздного газа и движутся вместе с ними. Эти поля примерно в 100 тыс. раз слабее магнитного поля Земли. Межзвёздные магнитные поля способствуют образованию наиболее плотных и холодных облаков газа, из которых конденсируются звёзды. Частицы космических лучей также реагируют на межзвёздное магнитное поле: они перемещаются вдоль его силовых линий по спиральным траекториям, как бы навиваясь на них. При этом электроны, входящие в состав космических лучей, излучают радиоволны. Это так называемое синхротронное излучение рождается в межзвёздном пространстве и уверенно наблюдается в радиодиапазоне. ГАЗОВЫЕ ТУМАННОСТИ Наблюдения с помощью телескопов позволили обнаружить на небе большое количество слабосветящихся пятен - светлых туманностей. Систематическое изучение туманностей начал в XVIII в. Уильям Гершель. Он разделял их на белые и зеленоватые. Подавляющее большинство белых туманностей образовано множеством звёзд - это звёздные скопления и галактики, а некоторые оказались связанными с межзвёздной пылью, которая отражает свет близко расположенных звёзд, - это отражательные туманности. Как правило, в центре такой туманности видна яркая звезда. А вот зеленоватые туманности - не что иное, как свечение межзвёздного газа. Самая яркая на небе газовая туманность - Большая туманность Ориона. Она видна в бинокль, а при хорошем зрении её можно заметить и невооружённым глазом - чуть ниже трёх звёзд, расположенных в одну линию, которые образуют Пояс Ориона. Расстояние до этой туманности около 1000 световых лет. Что заставляет светиться межзвёздный газ? Ведь привычный нам воздух прозрачен и не излучает света. Голубое небо над головой светится рассеянным на молекулах воздуха светом Солнца. Ночью небо становится тёмным. Впрочем, иногда всё же можно увидеть свечение воздуха, например во время грозы, когда под действием электрического разряда возникает молния. В северных широтах и в Антарктиде часто наблюдаются полярные сияния - разноцветные полосы и сполохи на небе. В обоих случаях воздух излучает свет не сам по себе, а под действием потока быстрых частиц. Поток электронов порождает вспышку молнии, а попадание в атмосферу Земли энергичных частиц из радиационных поясов, существующих в околоземном космическом пространстве, - полярные сияния. Подобным образом возникает излучение в неоновых и других газовых лампах: поток электронов бомбардирует атомы газа и заставляет их светиться. В зависимости от того, какой газ находится в лампе, от его давления и электрического напряжения, приложенного к лампе, изменяется цвет излучаемого света. В межзвёздном газе также происходят процессы, приводящие к излучению света, однако они не всегда связаны с бомбардировкой газа быстрыми частицами. Объяснить, как возникает свечение межзвёздного газа, можно на примере атомарного водорода. Атом водорода состоит из ядра (протона), имеющего положительный электрический заряд, и вращающегося вокруг него отрицательно заряженного электрона. Они связаны между собой электрическим притяжением. Затратив определённую энергию, их можно разделить. Такое разделение приводит к ионизации атома. Но электроны и ядра могут вновь соединиться друг с другом. При каждом объединении частиц будет выделяться энергия. Она излучается в виде порции (кванта) света определённого цвета, соответствующего данной энергии. Итак, для того чтобы газ излучал, необходимо ионизовать атомы, из которых он состоит. Это может произойти в результате столкновений с другими атомами, но чаще ионизация возникает, когда атомы газа поглощают кванты ультрафиолетового излучения, например от ближайшей звезды. Если вблизи облака нейтрального водорода вспыхнет голубая горячая звезда, то при условии, что облако достаточно большое и массивное, почти все ультрафиолетовые кванты от звезды поглотятся атомами облака. Вокруг звезды складывается область ионизованного водорода. Освободившиеся электроны образуют электронный газ температурой около 10 тыс. градусов. Обратный процесс рекомбинации, когда свободный электрон захватывается протоном, сопровождается переизлучением освободившейся энергии в виде квантов света. Свет излучается не только водородом. Как считалось в XIX в., цвет зеленоватых туманностей определяется излучением некоего «небесного» химического элемента, который назвали небулием (от лат. nebula - «туманность»). Но впоследствии выяснилось, что зелёным цветом светится кислород. Часть энергии движения частиц электронного газа расходуется на возбуждение атомов кислорода, т. е. на перевод электрона в атоме на более далёкую от ядра орбиту. При возвращении электрона на устойчивую орбиту атом кислорода должен испустить квант зелёного света. В земных условиях он не успевает этого сделать: плотность газа слишком высока и частые столкновения «разряжают» возбуждённый атом. А в крайне разреженной межзвёздной среде от одного столкновения до другого проходит достаточно много времени, чтобы электрон успел совершить этот запрещённый переход и атом кислорода послал в пространство квант зелёного света. Аналогичным образом возникает излучение азота, серы и некоторых других элементов. Таким образом, область ионизованного газа вокруг горячих звёзд можно представить в виде «машины», которая перерабатывает ультрафиолетовое излучение звезды в очень интенсивное излучение, спектр которого содержит линии различных химических элементов. И цвет газовых туманностей, как выяснилось позднее, различен: они бывают зеленоватые, розовые и других цветов и оттенков - в зависимости от температуры, плотности и химического состава газа. Некоторые звезды на заключительных стадиях эволюции постепенно сбрасывают внешние слои, которые, медленно расширяясь, образуют светящиеся туманности. При наблюдении в телескопы эти туманности напоминают диски планет, поэтому они получили название планетарных. В центре некоторых из них можно увидеть небольшие очень горячие звезды. Расширяющиеся газовые туманности также возникают в конце жизни некоторых массивных звезд, когда они взрываются как сверхновые; при этом звезды полностью разрушаются, рассеивая свое вещество в межзвездное пространство. Это вещество богато тяжелыми элементами, образовавшихся в ядерных реакциях, протекавших внутри звезды, и в дальнейшем служит материалом для звезд новых поколений и планет. Что происходит в центре нашей Галактики? Центральная область Млечного Пути приковывала внимание астрономов на протяжении многих десятилетий. От нее до Земли всего 25 тыс. световых лет, тогда как от центров других галактик нас отделяют миллионы световых лет, поэтому есть все основания надеяться, что именно центр нашей Галактики удастся изучить более подробно. Однако в течение длительного времени непосредственно наблюдать эту область было невозможно, поскольку она скрыта большими плотными облаками газа и пыли. Хотя открытия, сделанные при наблюдениях рентгеновского и гамма-излучения, безусловно важны, наиболее обширные и ценные спектроскопические исследования центра Галактики были проведены в инфракрасном и радиодиапазонах, в которых он впервые наблюдался. Довольно подробно изучалось радиоизлучение атомарного водорода с длиной волны 21 см. Водород - наиболее распространенный элемент во Вселенной, что компенсирует слабость его излучения. В тех областях Млечного Пути, где облака межзвездного газа не слишком плотны и где ультрафиолетовое излучение не очень интенсивно, водород присутствует главным образом в виде изолированных электрически нейтральных атомов; именно хорошо различимые радиосигналы атомарного водорода детально картировались для установления структуры нашей Галактики. На расстояниях более 1000 св. лет от центра Галактики излучение атомарного водорода дает надежные данные о вращении Галактики и структуре ее спиральных рукавов. Из него нельзя получить много информации об условиях вблизи центра Галактики, поскольку там водород преимущественно объединен в молекулы или ионизован (расщеплен на протон и электрон). Мощные облака молекулярного водорода скрывают центр Галактики и наиболее удаленные объекты, находящиеся в плоскости Галактики. Однако микроволновые и инфракрасные телескопы позволяют наблюдать и эти облака, и то, что находится сзади них в галактическом центре. Кроме молекулярного водорода облака содержат много стабильных молекул окиси (монооксида) углерода (СО), для которых наибольшая характеристическая длина волны излучения составляет 3 мм. Это излучение проходит через земную атмосферу и может быть зарегистрировано наземными приемниками; особенно много окиси углерода в темных пылевых облаках, поэтому она играет полезную роль для определения их размеров и плотности. Измеряя доплеровский сдвиг (изменение частоты и длины волны сигнала, вызываемое движением источника вперед или назад относительно наблюдателя), можно определить и скорости движения облаков. Обычно темные облака довольно холодные - с температурой около 15 К(-260°С), поэтому окись углерода в них находится в низких энергетических состояниях и излучает на относительно низких частотах - в миллиметровом диапазоне. Часть вещества вблизи центра Галактики явно более теплая. С помощью Койперовской астрономической обсерватории исследователями из Калифорнийского университета в Беркли зарегистрировали более энергичное излучение окиси углерода в дальней инфракрасной области, указывающее на температуру газа около 400 К, что приблизительно соответствует точке кипения воды. Этот газ нагревается под воздействием идущего из центра Галактики ультрафиолетового излучения и, возможно, ударных волн, которые возникают при столкновениях облаков, движущихся вокруг центра. В других местах вокруг центра окись углерода несколько холоднее и большая часть ее излучения приходится на более длинные волны - около 1 мм. Но даже здесь температура газа составляет несколько сотен кельвинов, т. е. близка к температуре у поверхности Земли и гораздо выше, чем внутри большинства межзвездных облаков. "К другим детально изученным молекулам относятся цианистый водород (HCN), гидроксил (ОН), моносульфид углерода (CS) и аммиак (NH^). Карта излучения HCN высокого разрешения была получена на радиоинтерферометре Калифорнийского университета. Карта указывает на существование разбитого на отдельные сгустки, неоднородного диска из теплых молекулярных облаков, окружающего «полость» шириной около 10 св. лет в центре Галактики. Поскольку диск наклонен относительно линии наблюдения с Земли, эта круглая полость кажется эллиптической (см. рис. внизу). Атомы углерода и кислорода, часть которых ионизована ультрафиолетом, перемешаны в диске с молекулярным газом. Карты инфракрасного и радиоизлучений, соответствующих линиям испускания ионов, атомов и разных молекул, показывают, что газовый диск вращается вокруг центра Галактики со скоростью около 110 км/с, а также, что этот газ теплый и собран в отдельные сгустки. Измерения обнаружили и некоторые облака, движения которых совершенно не соответствуют этой общей схеме циркуляции; возможно, это вещество упало сюда с некоторого расстояния. Ультрафиолетовое излучение центральной области «ударяет» по внешнему краю облачного диска, создавая почти непрерывное кольцо ионизованного вещества. Ионизованные стримеры и сгустки газа имеются также в центральной полости. Некоторые достаточно распространенные ионизованные элементы, включая неон, лишенный одного электрона, аргон без двух электронов и серу без трех электронов, имеют яркие линии излучения вблизи 10 мкм - в той части инфракрасного спектра, для которого земная атмосфера прозрачна. Было также обнаружено, что из всех элементов вблизи центра преобладает однозарядный ионизованный неон, тогда как трехзарядный ион серы там практически отсутствует. Чтобы отобрать три электрона у атома серы, нужно затратить гораздо больше энергии, чем для того, чтобы отобрать один электрон у атома неона; наблюдаемый состав вещества указывает на то, что в центральной области поток ультрафиолетового излучения велик, но его энергия не очень большая. Отсюда следует, что это излучение, по-видимому, создается горячими звездами с температурой от 30 до 35 тыс. Кельвинов, и звезды с температурой, существенно больше указанной, отсутствуют. Спектроскопический анализ излучения ионов дал также подробную информацию о скоростях разреженного вещества внутри полости диаметром 10 св. лет, окружающей центр. В некоторых частях полости скорости близки к скорости вращения кольца молекулярного газа - около 110 км/с. Часть облаков внутри этой области движется значительно быстрее - примерно со скоростью 250 км/с, а некоторые имеют скорости до 400 км/с. В самом центре обнаружено ионизованное вещество, движущееся со скоростями до 1000 км/с. Это вещество ассоциировано с интересным набором объектов вблизи центра полости, известным как IRS 16, который был обнаружен Беклином и Негебауэром во время поиска источников коротковолнового инфракрасного излучения. Большинство найденных ими очень небольших источников - это, вероятно, одиночные массивные звезды, но IRS 16 (16-й в их списке инфракрасный источник) представляет собой нечто иное: последующие измерения выявили в нем.пять ярких необычных компонентов. Вся эта центральная область - как теплый газовый диск, так и внутренняя полость - является, по- видимому, сценой, где совсем недавно разыгралось какое-то бурное действие. Кольцо или диск газа, вращающиеся вокруг центра Галактики, должны постепенно превратиться в однородную структуру в результате столкновений между быстро и медленно движущимися сгустками вещества. Измерения доплеровского сдвига показывают, что разница между скоростями отдельных сгустков в кольце молекулярного газа достигает десятков километров в секунду. Эти сгустки должны сталкиваться, а их распределение сглаживаться в масштабах времени порядка 100 тыс. лет, т. е. за один-два оборота вокруг центра. Отсюда следует, что в течение этого промежутка времени газ подвергся сильному возмущению, возможно, в результате выделения энергии из центра или падения вещества с некоторого расстояния извне, и столкновения между сгустками должны быть еще достаточно сильными, чтобы в газе возникали ударные волны. Справедливость этих выводов может быть проверена путем поиска «следов» таких волн. Ударные волны могут быть идентифицированы по спектральным линиям горячих сильно возбужденных молекул. Такие молекулы были обнаружены при наблюдениях с Койперовской астрономической обсерватории; к ним относятся радикалы гидроксила - электрически заряженные фрагменты молекул воды, которые были с силой разорваны на части. Зарегистрировано также коротковолновое инфракрасное излучение горячих молекул водорода; оно указывает, что в некоторых местах температура облаков молекулярного газа достигает 2000 К - именно такая температура может создаваться ударными волнами. Каков источник плотных молекулярных пылевых облаков вблизи центра? Вещество содержит тяжелые элементы; это указывает на то, что оно было образовано в недрах звезд, где в результате элементы, такие как углерод, кислород и азот. Старые звезды расширяются и испускают огромное количество вещества, а в некоторых случаях взрываются как сверхновые. В любом случае тяжелые элементы выбрасываются в межзвездное пространство. Вещество облаков, находящихся вблизи центра Галактики, было, по-видимому, более основательно «обработано» внутри звезд, чем вещество, расположенное дальше от центра, поскольку вблизи центра особенно много некоторых редких изотопов, образующихся только внутри звезд. Не все это вещество было создано ранее существовавшими звездами в непосредственной близости от центра. Возможно, часть облаков была притянута извне. Под влиянием трения и магнитных полей вещество постепенно стягивается по направлению к центру, поэтому в этой области оно должно скапливаться.. Газ в Большом Магеллановом Облаке. Светящиеся газовые туманности- одни из наиболее красивых и впечатляющих объектов во Вселенной. Туманность 30 Золотой Рыбы является самой яркой и большой из газовых туманностей трех десятков галактик местной группы, включая нашу Галактику. Она имеет неправильную форму и огромные размеры. В то время как Большая туманность в созвездии Ориона видна невооруженным глазом в виде звезды с размытым изображением. Туманность 30 Золотой Рыбы занимает на небе площадь, сравнимую с диском солнца или полной луны, несмотря на то что она находится от нас в 100 с лишним раз дальше туманности Ориона. Ее диаметр составляет около 1000 световых лет, а туманности Ориона – всего три световых года. Газ туманности в значительной степени ионизирован: большая часть атомов потеряла по крайней мере по одному электрону. Оказывается, туманность 30 Золотой Рыбы содержит ионизированного газа в 1500 раз больше, чем туманность Ориона. Ионизация газа происходит под действием ультрафиолетового излучения, испускаемого массивными горячими молодыми звездами, находящимися в туманности. Двадцатый век породил удивительные науку и технику, они позволяют человеческой мысли проникать в глубины Вселенной, поистине за пределы известного мира. Наш кругозор и горизонты видимого мира расширились на столько, что человеческий разум, пытающийся сбросить с себя оковы земных предрассудков, едва способен овладеть им. Ученые, работающие в различных областях науки, пытаясь с помощью физических законов объяснить загадочные объекты, обнаруженные в наше время, убеждаются в том, что удивительная Вселенная, в которой мы живём, в основном ещё нам не известна. Если же какая-либо информация о Вселенной становится доступной, то часто даже самый дерзновенный ум оказывается не подготовленным к её восприятию в той форме, в какой её преподносит природа. Поражаясь необычности вновь открытых небесных объектов, следует помнить, что за всю историю человечества, ни одна наука не достигала столь феноменально быстрого развития, как наука об этих уникальных объектах. И всё это буквально за последние десятилетия. Утоляя присущую человеку неистощимую жажду познания, астрофизики неутомимо изучают природу этих небесных объектов, бросающих вызов человеческому разуму. 1.С.Данлоп «Азбука звёздного неба» (1990 г.) 2.И.Левитт «За пределами известного мира» (1978 г.) 3.Джон С. Матис «Объект необычайно высокой светимости в Большом Магелановом Облаке» (В мире науки. Октябрь 1984 г.) 4.Чарлз Г. Таунс, Рейнгард Гензел «Что происходит в центре нашей Галактики?» (В мире науки. Июнь 1990 г.) 5.Аванта плюс. Астрономия.

Звездное небо содержит много туманных объектов. Они бывают светящиеся и темные, поглощающие свет.

Широкое применение фотографии в астрономии позволило более объективно обнаружить, описать и составить каталоги темных туманностей.

На фоне светлых областей Млечного Пути отчетливо выделяются темные пятна неправильной формы и различных угловых размеров. Эти темные пятна и области доказывают существование вблизи галактической плоскости холодной разреженной материи.

Межзвездная среда - это вещество и поля, заполняющие межзвездное пространство внутри Галактики. Большая часть массы межзвездного вещества приходится на разреженный газ и пыль. Вся межзвездная среда пронизывается магнитными полями, космическими лучами, электромагнитным излучением. Основной компонент межзвездной среды - межзвездный газ , который состоит из водорода (70 % массы) и гелия (28 %). Остальная часть массы межзвездного вещества приходится на более тяжелые химические элементы (O, C, N, Ne, S, Ar, Fe и др.).

Общая масса межзвездного вещества нашей Галактики (не считая короны) оценивается в 2 % от общей массы всей Галактики. В зависимости от температурных условий и плотности межзвездный газ может находиться в трех различных состояниях: ионизированном , атомарном и молекулярном .

Основные данные о межзвездном газе получены радиоастрономическими методами, после того как в 1951 г. было обнаружено радиоизлучение нейтрального атомарного водорода на волне 21 см. Оказалось, что атомарный водород, имеющий температуру 100 К, образует в диске Галактики тонкий слой толщиной 200-300 пк, увеличивающийся до нескольких килопарсек на расстоянии 15-20 кпк от ее центра.

Основная часть межзвездного газа сосредоточена в спиральных ветвях Галактики, где он распределен также неравномерно: собран в клочковатые образования размерами в десятки и сотни парсек со средней концентрацией частиц несколько атомов в 1 см 3 . Около половины массы межзвездного газа содержится в гигантских молекулярных облаках со средней массой 10 5 масс Солнца и диаметром около 40 пк. Из-за низкой температуры (около 10 К) и повышенной плотности (до 10 3 частиц в 1 см 3) водород и другие элементы в этих облаках объединены в молекулы. Таких молекулярных облаков в Галактике насчитывается около 4000.

Области ионизированного водорода с температурой 8000-10 000 К проявляют себя в оптическом диапазоне как светлые диффузные туманности . Их свечение возбуждается ультрафиолетовым излучением близкорасположенных горячих звезд (спектральных классов B и O).

Светлая туманность излучает свет, если ее освещает близлежащая звезда. Звезды класса W, O, B способны вызвать ионизацию атомов водорода на расстоянии примерно 500 световых лет.

Светлые диффузные туманности, имеющие неправильную, клочковатую форму, достигают размеров до 10 пк, а их плотность колеблется от 10 -17 до 10 -20 кг/м 3 . Распределяются области такого ионизированного водорода в плоской подсистеме Галактики, и они являются указателями мест протекающего в настоящее время звездообразования. Так, в Большой туманности Ориона с помощью космического телескопа Хаббла обнаружены протозвезды, окруженные протопланетными дисками.

Большая туманность Ориона - самая яркая газовая туманность. Она видна в бинокль или небольшой телескоп чуть ниже трех звезд, расположенных в одну линию, которые образуют Пояс Ориона. Расстояние до этой туманности около 1000 световых лет.

Некоторые из туманностей при наблюдении через фильтр оказываются состоящими из отдельных волокон. Таковой, например, является известная Крабовидная туманность в созвездии Тельца, являющаяся остатком взорвавшейся сверхновой звезды.

Если близлежащие звезды не столь горячи и не могут ионизировать водород, то туманность светится за счет отражения звездного света. Данные туманности содержат много пыли. Примером такой светлой туманности является туманность в скоплении Плеяды в созвездии Тельца.

Особым типом туманностей являются планетарные туманности , которые выглядят как слабо светящиеся диски или кольца, напоминающие диски планет. Они были открыты в 1783 г. У. Гершелем , а сейчас их насчитывается более 1200. Планетарные туманности представляют собой светящуюся расширяющуюся оболочку ионизированного газа, сброшенного красным гигантом на конечной стадии своей эволюции. В центре планетарной туманности находится остаток погибшего красного гиганта - горячий белый карлик или нейтронная звезда. Под действием внутреннего давления газа планетарная туманность расширяется примерно со скоростью 20-40 км/с, при этом плотность газа падает. Эти объекты обогащают межзвездную среду веществом. Планетарная туманность Песочные Часы показывает, какие сложные процессы могут происходить на последней стадии эволюции звезды.

Возражал: «Межзвёздная область небес, как полагают некоторые современные эпикурейцы , должна быть пустой».

После создания современной электромагнитной теории некоторые физики постулировали, что невидимый светоносный эфир является средой для передачи световых волн. Они также полагали, что эфир заполняет межзвёздное пространство. Р. Паттерсон в 1862 году писал : «Это истечение является основой вибраций или колебательных движений в эфире, который заполняет межзвёздное пространство».

Применение глубоких фотографических обзоров ночного неба позволило Э. Барнарду получить первое изображение тёмной туманности , которое силуэтом выделялось на фоне звёзд галактики. Однако первое открытие холодной диффузной материи было сделано Д. Гартманом в 1904 году после обнаружения неподвижного спектра поглощения в спектре излучения двойных звёзд , наблюдавшихся с целью проверки эффекта Доплера .

В своём историческом исследовании спектра Дельты Ориона Гартман изучал движение по орбите компаньонов системы Дельты Ориона и свет, приходящий от звезды, и понял, что некоторая часть света поглощается на пути к Земле. Гартман писал, что «линия поглощения кальция очень слаба», а также, что «некоторым сюрпризом оказалось то, что линии кальция на длине волны 393,4 нанометров не движутся в периодическом расхождении линий спектра, которое присутствует в спектроскопически-двойных звёздах ». Стационарная природа этих линий позволила Гартману предположить, что газ, ответственный за поглощение, не присутствует в атмосфере Дельты Ориона, но, напротив, находится вне звезды и расположен между звездой и наблюдателем. Это исследование и стало началом изучения межзвёздной среды.

После исследований Гартмана, в 1919 году, Эгер во время изучения линий поглощения на волнах 589,0 и 589,6 нанометров в системах Дельты Ориона и Беты Скорпиона обнаружил в межзвёздной среде натрий .

Дальнейшие исследования линий «H» и «K» кальция Билзом (1936) позволили обнаружить двойные и несимметричные профили спектра Эпсилон и Дзета Ориона . Это были первые комплексные исследования межзвёздной среды в созвездии Ориона . Асимметричность профилей линий поглощения была результатом наложения многочисленных линий поглощения, каждая из которых соответствовала атомным переходам (например, линия «K» кальция) и происходила в межзвёздных облаках, каждое из которых имело свою собственную лучевую скорость . Так как каждое облако движется с разной скоростью в межзвёздном пространстве, как по направлению к Земле, так и удаляясь от неё, то в результате эффекта Доплера линии поглощения сдвигались либо в фиолетовую , либо в красную сторону соответственно. Это исследование подтвердило, что материя не распределена равномерно по межзвёздному пространству.

Интенсивные исследования межзвёздной материи позволили У. Пикерингу в 1912 году заявить , что «межзвёздная поглощающая среда, которая как показал Каптейн , поглощает только на некоторых волнах, может свидетельствовать о наличии газа и газообразных молекул, которые исторгаются Солнцем и звёздами ».

Торндайк в 1930 году писал: «Было бы ужасно осознавать, что существует непреодолимая пропасть между звёздами и полной пустотой. Полярные сияния возбуждаются заряженными частицами, которые испускает наше Солнце . Но если миллионы других звёзд также испускают заряженные частицы, а это непреложный факт, то абсолютный вакуум вообще не может существовать в галактике» .

Наблюдательные проявления [ | ]

Перечислим основные наблюдательные проявления:

Структура МЗС крайне нетривиальна и неоднородна: гигантские молекулярные облака, отражательные туманности, протопланетные туманности, планетарные туманности, глобулы и т. д. Это приводит к широкому спектру наблюдательных проявлений и процессов, происходящих в среде. Далее в таблице приведены свойства основных компонентов среды для диска:

Фаза Температура
()
Концентрация
(см −3)
Масса облаков
(M ☉)
Размер
(пк)
Доля занимаемого объёма Способ наблюдения
Корональный газ ~5⋅10 5 ~0,003 - - ~0,5 Рентген, линии поглощения металлов в УФ
Яркие области HII ~10 4 ~30 ~300 ~10 ~10 −4 Яркая линия H α
Зоны HII низкой плотности ~10 4 ~0,3 - - ~0,1 Линия H α
Межоблачная среда ~10 4 ~0,1 - - ~0,4 Линия Ly α
Тёплые области HI ~10 3 ~1 - - ~0,01 Излучение HI на λ =21 см
Мазерные конденсации <100 ~10 10 ~10 5 ~10 −5 Мазерное излучение
Облака HI ≈80 ~10 ~100 ~10 ~0,01 Поглощение HI на λ =21 см
Гигантские молекулярные облака ~20 ~300 ~3⋅10 5 ~40 ~3⋅10 −4
Молекулярные облака ≈10 ~10 3 ~300 ~1 ~10 −5 Линии поглощения и излучения молекулярного водорода в радио- и инфракрасном спектре.
Глобулы ≈10 ~10 4 ~20 ~0,3 ~3⋅10 −9 Поглощение в оптическом диапазоне.

Мазерный эффект [ | ]

В 1965 году в ряде спектров радиоизлучения были обнаружены очень интенсивные и узкие линии с λ =18 см. Дальнейшие исследования показали, что линии принадлежат молекуле гидроксила OH , а их необычные свойства - результат мазерного излучения. В 1969 году были открыты мазерные источники от молекулы воды на λ =1,35 см, позже были обнаружены мазеры, работающие и на других молекулах.

Для мазерного излучения необходима инверсная населённость уровней (количество атомов на верхнем резонансном уровне больше, чем на нижнем). Тогда, проходя сквозь вещество, свет с резонансной частотой волны усиливается, а не ослабевает (это и называется мазерным эффектом). Для поддержания инверсной населённости необходима постоянная накачка энергией, поэтому все космические мазеры делятся на два типа:

  1. Мазеры, ассоциирующиеся с молодыми (возраст 10 5 лет) горячими (а возможно, и с протозвёздами) и находящиеся в областях звездообразования.
  2. Мазеры, связанные с сильно проэволюционировавшими холодными звёздами большой светимости.

Физические особенности [ | ]

Отсутствие локального термодинамического равновесия (ЛТР) [ | ]

В межзвёздной среде концентрация атомов и, следовательно, оптическая толщина малы. Это значит, что эффективная температура излучения - это температура излучения звёзд (~5000 K) , которая никак не соответствует температуре самой среды. При этом электронная и ионная температуры плазмы могут сильно отличаться друг от друга, поскольку обмен энергией при соударении происходит крайне редко. Таким образом, не существует единой температуры даже в локальном смысле.

Распределение числа атомов и ионов по населённостям уровней определяется балансом процессов рекомбинации и ионизации. ЛТР требует, чтобы эти процессы были в равновесии, чтобы выполнялось условие детального баланса, однако в межзвёздной среде прямые и обратные элементарные процессы имеют разную природу, и поэтому детальный баланс установиться не может.

c - скорость света , h - постоянная Планка , ν - частота фотона до рассеяния, θ - угол рассеяния.

Для малых энергий фотонов h ν ≪ m e c 2 {\displaystyle h\nu \ll m_{e}c^{2}} сечение рассеяния равно томсоновскому : σ T ≃ 6 , 65 ⋅ 10 − 25 {\displaystyle \sigma _{T}\simeq 6,65\cdot 10^{-25}} см².

Механизмы охлаждения [ | ]

Как уже говорилось, межзвёздная среда оптически тонка и имеет невысокую плотность, а раз так, то основной механизм охлаждения - это излучение фотонов. Испускание же квантов связано с бинарными процессами взаимодействия (частица-частица), поэтому суммарную скорость объёмного охлаждения можно представить в виде Λ (n , T) = n 2 λ (T) {\displaystyle \Lambda (n,T)=n^{2}\lambda (T)} , где функция охлаждения λ зависит только от температуры и химического состава среды.

Свободно-свободное (тормозное) излучение

Свободно-свободное (тормозное) излучение в космической плазме вызвано кулоновскими силами притяжения или отталкивания. Электрон ускоряется в поле иона и начинает излучать электромагнитные волны, переходя с одной незамкнутой (в классическом смысле) орбиты на другую, но оставаясь свободным, то есть обладающим достаточной энергией, чтобы уйти на бесконечность. При этом излучается весь спектр от рентгена до радио. Выделяющаяся при этом энергия из единицы объёма внутри телесного угла в единицу времени равна:

j ν (T) = 16 3 (π 6) 1 / 2 n ν Z 2 e 6 m e 2 c 3 (m e k T) 1 / 2 g exp ⁡ − h ν k T n e n i {\displaystyle j_{\nu }(T)={\frac {16}{3}}\left({\frac {\pi }{6}}\right)^{1/2}{\frac {n_{\nu }Z^{2}e^{6}}{m_{e}^{2}c^{3}}}\left({\frac {m_{e}}{kT}}\right)^{1/2}g\exp {\frac {-h\nu }{kT}}n_{e}n_{i}} [эрг/(см³·с·ср·Гц)],

где n ν {\displaystyle n_{\nu }} - показатель преломления,

g - так называемый множитель Гаунта (учитывает квантовые эффекты и частичную экранировку ядра электронами, близок к 1 в оптическом диапазоне), и n i {\displaystyle n_{i}} - концентрация электронов и ионов соответственно, Z - заряд иона в единицах элементарного заряда.

Для чисто водородной плазмы с равной концентрацией протонов и электронов коэффициент объёмного охлаждения равен

Λ f f (H) = ∫ 0 ∞ j ν d ν ≃ 1 , 43 ⋅ 10 − 27 n e 2 T {\displaystyle \Lambda _{\mathrm {ff} }(\mathrm {H})=\int \limits _{0}^{\infty }{j_{\nu }d\nu }\simeq 1,43\cdot 10^{-27}n_{e}^{2}{\sqrt {T}}} [эрг/(см³·с)]

(индекс ff означает свободно-свободные (free-free) переходы). Однако космическая плазма не чисто водородная, в ней есть тяжёлые элементы, благодаря большому заряду которых увеличивается эффективность охлаждения. Для полностью ионизированной среды с нормальным космическим содержанием элементов Λ f f ≈ 1 , 7 Λ f f (H) {\displaystyle \Lambda _{\mathrm {ff} }\approx 1,7\Lambda _{\mathrm {ff} }(\mathrm {H})} . Этот механизм особенно эффективен для плазмы с T > 10 5 K .

Рекомбинационное излучение Двухфотонное излучение

При запрещённых резонансных переходах с уровней 2 s 1 / 2 → 1 s 1 / 2 {\displaystyle 2s_{1/2}\rightarrow 1s_{1/2}} в водороде и с 2 1 S 0 {\displaystyle 2^{1}S_{0}} уровня в гелии и гелиеподобных ионах (однофотонный переход запрещён правилами отбора). Возбуждаются же эти уровни в основном за счёт электронных ударов. Суммарная энергия образующихся фотонов соответствует разности энергии между двумя уровнями, но каждый из фотонов не имеет фиксированной энергии и образуется непрерывное излучение, которое и наблюдается в зонах HII (ионизованного водорода). Эти фотоны имеют длину волны больше, чем у линии Лайман-альфа , и, следовательно, неспособны возбудить нейтральный атом водорода в основном состоянии, поэтому они уходят из среды, являясь основной причиной охлаждения горячей космической плазмы с T = 10 6 -10 8 K .

Обратное комптоновское рассеяние

Если рассеяние фотона с энергией ε происходит на быстром электроне с полной энергией E = γ m e c 2 {\displaystyle E=\gamma m_{e}c^{2}} , то важной становится передача энергии и импульса от электрона фотону. Лоренц-преобразование к системе покоя электрона даёт энергию фотона в ней γε , где γ - лоренц-фактор . Воспользуемся вышеприведённой формулой комптон-эффекта, дающей потерю энергию фотона, рассеянного на покоящемся электроне, и, перейдя обратно в лабораторную систему отсчёта, получим энергию рассеянного фотона ε 1 ∼ γ 2 ε {\displaystyle \varepsilon _{1}\sim \gamma ^{2}\varepsilon } . Видно, что низкочастотные кванты превращаются в кванты жёсткого излучения. Усредняя по углам скорость потерь энергии одного такого электрона в поле изотропного излучения, получим

− (d E d t) c o m p t = 4 3 σ T c γ 2 β 2 ∫ 0 ∞ u ν d ν {\displaystyle -\left({\frac {dE}{dt}}\right)_{\mathrm {compt} }={\frac {4}{3}}\sigma _{T}c\gamma ^{2}\beta ^{2}\int \limits _{0}^{\infty }u_{\nu }d\nu } ,

где β = v /c - безразмерная скорость электрона,

u ν - частотная плотность распределения энергии излучения.

В случае теплового распределения электронов с концентрацией n e {\displaystyle n_{e}} и температурой T имеем ⟨ β 2 ⟩ = ⟨ (v / c) 2 ⟩ = 3 k T / m e c 2 {\displaystyle \langle \beta ^{2}\rangle =\langle (v/c)^{2}\rangle =3kT/m_{e}c^{2}} . Если γ ≈ 1 {\displaystyle \gamma \approx 1} (нерелятивистские, относительно низкоэнергетичные электроны), то объёмное охлаждение такой среды составит:

Λ c = − (d E d t) c o m p t n e = 4 k T m e c 2 σ T c n e ∫ 0 ∞ u ν d ν {\displaystyle \Lambda _{c}=-\left({\frac {dE}{dt}}\right)_{\mathrm {compt} }n_{e}={\frac {4kT}{m_{e}c^{2}}}\sigma _{T}cn_{e}\int \limits _{0}^{\infty }u_{\nu }d\nu } .

Комптоновское охлаждение обычно доминирует в высокоионизированной и сильно нагретой плазме вблизи источников рентгеновского излучения. Благодаря ему среда не может нагреться выше T ∼ ε 4 k {\displaystyle T\sim {\frac {\varepsilon }{4k}}} . Этот механизм был важен в ранней вселенной до эпохи рекомбинации . В обычных условиях МЗС этим эффектом можно пренебречь.

Ионизация электронным ударом

Если все остальные механизмы охлаждения излучательные (энергия уносится фотонами), то этот безызлучательный. Тепловая энергия расходуется на отрыв электрона и запасается в виде внутренней энергии связи ион-электрон. Потом она высвечивается при рекомбинациях.

Излучение в спектральных линиях

Основной механизм охлаждения МЗС при T < 10 5 K . Излучение происходит при переходах с уровней, возбуждённых после электронного удара. Спектральный диапазон, в котором уносится энергия, определяется температурой - чем больше температура, тем более высокие уровни возбуждаются, тем энергичнее излучаемые фотоны и тем быстрее идёт охлаждение. В таблице приведены линии, доминирующие при различных температурах.

Температура, K Охлаждение в линиях
> 10 6 Рентгеновские линии H и He-подобных ионов тяжёлых элементов
2⋅10 4 -10 6 Резонансные УФ-линии He и тяжёлых до Fe
(1-2)⋅10 4 Линии H (в основном Ly α )
(0,5-1)⋅10 4 Запрещённые линии тяжёлых элементов
30-10 4 Далёкие ИК-линии при переходах между уровнями тонкой структуры основных термов
(1-2)⋅10 3 Молекулярные уровни, в основном H 2
<30 Вращательные переходы молекул и воды H 2 O

Тепловая неустойчивость [ | ]

Теперь, зная все элементарные процессы и механизмы охлаждения и нагрева, мы можем записать уравнения теплового баланса в виде n G (T) = n 2 λ (T) {\displaystyle nG(T)=n^{2}\lambda (T)} . Запишем уравнение ионизационного баланса, необходимое, чтобы узнать населённость уровней. Решая, получим равновесную температуру T (n ) . Учитывая, что вещество в межзвёздной среде крайне разрежено, то есть представляет собой идеальный газ, подчиняющийся уравнению Менделеева - Клапейрона , найдём равновесное давление P (n ) и обнаружим, что зависимость больше напоминает уравнение состояния газа Ван-дер-Вальса : существует область давлений, где одному значению P соответствует три равновесных значения n . Решение на участке с отрицательной производной неустойчиво относительно малых возмущений: при давлении больше, чем у окружающей среды, газовое облако будет расширяться до установления равновесия при меньшей плотности, а при меньшем, чем у окружающей среды, давлении - напротив, сжиматься. Это объясняет наблюдаемое динамическое равновесие разреженной межзвёздной среды и более плотных облаков межзвёздного газа.

В реальной же среде ситуация гораздо сложнее. Во-первых, существует магнитное поле , которое препятствует сжатию, если только последнее не происходит вдоль линий поля. Во-вторых, межзвёздная среда находится в непрерывном движении и её локальные свойства непрерывно меняются, в ней появляются новые источники энергии и исчезают старые; в результате условие теплового равновесия может вовсе не выполняться. В-третьих, кроме термодинамической неустойчивости, существуют гравитационная и магнитогидродинамическая. И это без учёта всякого рода катаклизмов в виде вспышек сверхновых, приливных влияний проходящих по соседству галактик или прохождения самого газа через спиральные ветви Галактики.

Запрещённые линии и линия 21 см [ | ]

Отличительной особенностью оптически тонкой среды является излучение в запрещённых линиях. Запрещёнными называют линии, которые запрещены правилами отбора, то есть возникают при переходах с метастабильных уровней. Характерное время жизни таких уровней при спонтанном распаде - от 10 −5 секунды до нескольких суток, однако существуют и значительно более долгоживущие состояния (см. ниже). При высоких концентрациях частиц их столкновение снимает возбуждение, то есть уровни почти никогда не успевают совершить излучательный переход и эмиссионные линии не наблюдаются из-за их крайней слабости. При малых плотностях интенсивность линии не зависит от вероятности перехода, поскольку малая вероятность компенсируется большим числом атомов, находящихся в метастабильном состоянии. Если ЛТР нет, то заселённость энергетических уровней следует рассчитывать из баланса элементарных процессов возбуждения и деактивации.

Важнейшей запрещённой линией МЗС является радиолиния атомарного водорода λ = 21 см . Эта линия возникает при переходе между подуровнями сверхтонкой структуры 1 2 S 1 / 2 {\displaystyle 1^{2}S_{1/2}} уровня атома водорода, связанными с наличием спина у электрона и протона: состояние с сонаправленными спинами обладает несколько большей энергией, чем с противоположно направленными (разность энергий уровней составляет лишь 5,87433 микро-электронвольт). Вероятность спонтанного перехода между этими уровнями A 10 = 2 , 9 ⋅ 10 − 15 {\displaystyle A_{10}=2,9\cdot 10^{-15}} с −1 (то есть время жизни возбуждённого состояния составляет 11 млн лет). Заселение верхнего уровня происходит благодаря столкновению нейтральных атомов водорода, причём населённость уровней n 1 = n H / 4 {\displaystyle n_{1}=n_{\mathrm {H} }/4} , n 0 = 3 n H / 4 {\displaystyle n_{0}=3n_{\mathrm {H} }/4} . При этом объёмный коэффициент излучения

j ν = h ν 10 4 π n 1 A 10 φ (ν) {\displaystyle j_{\nu }={\frac {h\nu _{10}}{4\pi }}n_{1}A_{10}\varphi (\nu)} ,

где φ(ν) - профиль линии, а фактор 4π предполагает изотропное излучение.

Исследования радиолинии 21 см позволили установить, что нейтральный водород в галактике в основном заключён в очень тонком, толщиной 400 пк , слое около плоскости Галактики. В распределении HI отчётливо прослеживаются спиральные ветви Галактики. Зеемановское расщепление абсорбционных компонент линии у сильных радиоисточников используется для оценки магнитного поля внутри облаков.

Вмороженность магнитного поля [ | ]

Вмороженность магнитного поля означает сохранение магнитного потока через любой замкнутый проводящий контур при его деформации. В лабораторных условиях магнитный поток можно считать сохраняющимся в средах с высокой электропроводностью. В пределе бесконечной электропроводности бесконечное малое электрическое поле вызвало бы рост тока до бесконечной величины. Следовательно, идеальный проводник не должен пересекать магнитные силовые линии и, таким образом, возбуждать электрическое поле, а напротив, должен увлекать за собой линии магнитного поля. Магнитное поле оказывается как бы вмороженным в проводник.

Реальная космическая плазма далеко не идеальна, и вмороженность магнитного поля следует понимать в том смысле, что требуется очень большое время для изменения потока через контур. На практике это означает, что мы можем считать поле постоянным, пока облако сжимается, обращается и т. д.

Межзвёздная пыль [ | ]

Эволюция межзвёздной среды [ | ]

Эволюция межзвёздной среды, а если быть точным, межзвёздного газа, тесно связана с химической эволюцией всей Галактики. Казалось бы, всё просто: звёзды поглощают газ, а после выбрасывают его обратно, обогащая его продуктами ядерного горения - тяжёлыми элементами, - таким образом металличность должна постепенно возрастать.

Головная ударная волна [ | ]

По другую сторону гелиопаузы, на расстоянии порядка 230 а. е. от Солнца, вдоль головной ударной волны (bow shock) происходит торможение с космических скоростей налетающего на Солнечную систему межзвёздного вещества.

Взаимодействие с нейтральным водородом [ | ]

Газ, всюду газ! Собранный в гигантские раскаленные шары, он образует бесчисленные звезды - в них сосредоточена главная масса вещества во Вселенной. Разреженный холодный газ, заполняющий огромные пространства в виде газовых туманностей, обволакивающий десятки звезд, газ, образующий атмосферы планет! И все это в безвоздушном пространстве. Но подлинно ли в безвоздушном?

Наши понятия о вакууме, о безвоздушном пространстве относительны. В электрической лампочке старого типа «нет воздуха», говорим мы, он оттуда выкачан. Сравнительно с комнатным воздухом там вакуум. Но физик с помощью своих лучших насосов может так выкачать воздух из какой-либо стеклянной трубки, что по сравнению с пространством в ней пространство внутри электрической лампы кишит мириадами молекул.

Газовые диффузные туманности с их плотностью порядка 10 -19 г/см³ раскинулись в безвоздушном пространстве. Но и оно, как мы убеждаемся, не совершенно пусто, в нем тоже есть газ. Газ ничтожной плотности, но все же газ, и между любыми двумя звездами есть газовая среда, как бы разрежена она ни была.

Но какой это газ? Это, конечно, не земной воздух, хотя бы и разреженный. История изучения этого газа принесла много интересного и неожиданного.

В 1904 г., изучая спектрально-двойную звезду Дельту Ориона, Гартман для большей точности определения ее лучевой скорости измерял положение в спектре всех темных линий, которые в нем были видны. Ведь если звезда движется как целое по своей орбите около центра тяжести системы, то все линии ее спектра должны смещаться одинаково в том смысле, что в пределах ошибок измерения смещение любой линии спектра должно соответствовать одной и той же скорости приближения или удаления от нас. Мы уже знаем, что при таком периодическом орбитальном движении линии спектра периодически же изменяют свое смещение. В спектре Дельты Ориона все линии вели себя «как следует», кроме линий ионизованного кальция. Эти две линии почему-то не участвовали в общем периодическом колебании положения линий в спектре, а упрямо стояли на месте. Неслась ли звезда на нас, удалялась ли она от нас в данный момент - линиям кальция это было безразлично.

Упрямые линии принадлежали атомам кальция, и Гартману ничего не оставалось, как заключить, что кальций почему-то не участвует в орбитальном движении звезды. Раз линии кальция видны как темные (в поглощении), то, очевидно, свет звезды проходит через него, поглощается в нем, но этот элемент не находится в атмосфере звезды, вызывающей появление в спектре остальных линий поглощения. Атмосфера звезды движется вместе со звездой, кальций же с ней не движется. Быть может, наша двойная звезда погружена в обширное облако разреженного кальция, в котором она и движется, не увлекая его с собой?

Такого рода линии кальция назвали стационарными, т. е. неизменными, неподвижными. В дальнейшем в спектрах многих других спектрально-двойных звезд были открыты стационарные линии кальция, но лишь в тех случаях, когда звезды были раннего спектрального класса B.

Слайфер, однако, нашел более вероятным, что стационарные линии производятся не облаком кальция, в которое погружена звезда, а облаками кальция или его непрерывной массой, расположенной на всем пути луча света от звезды к нам. Другими словами, кальций не околозвездный, а межзвездный газ. Этот взгляд был подтвержден. Тогда вместо «стационарные линии» стали говорить «межзвездные линии».

Выяснилось это так. Когда стало известно, что температура атмосферы звезды определяет вид ее спектра, стало возможно теоретически определять интенсивности разных линий, создаваемых атмосферой звезды определенного химического состава и определенной температуры. Выяснилось, что такие горячие звезды, как звезды класса В, не содержат в своей атмосфере атомов ионизованного кальция - для них там слишком горячо. Весь кальций там уже дважды ионизован, и его линий в спектре быть не может. Значит, ионизованный кальций, производящий в спектре горячих звезд стационарные линии, должен быть далеко от звезды, там, где не так горячо и где он может существовать.

Затем обнаружилось, что вовсе не одни лишь спектрально-двойные звезды обнаруживают эти линии кальция, - он есть в спектрах большинства горячих одиночных звезд. Там его линии вообще нельзя назвать стационарными, потому что одинокая звезда не совершает орбитального движения. По отношению к нам она движется постоянно с одной и той же скоростью, поэтому все линии ее спектра смещены по принципу Доплера на величины, соответствующие одной и той же скорости. Однако оказалось, что у таких горячих звезд смещение линий ионизованного кальция соответствует совершенно другой скорости , чем та скорость, с которой движется сама звезда.

Если ионизованный кальций заполняет все межзвездное пространство, то его линии, смещенные, как мы видим, всегда особенным образом, должны присутствовать в спектрах звезд любого типа. К сожалению, более холодные звезды сами содержат в своей атмосфере ионизованный кальций, а потому и его линии в спектре. Эти линии широки и сильны и маскируют тонкие, слабые линии межзвездного кальция. В некоторых случаях все же удалось обнаружить эти тонкие «межзвездные» линии, наложенные на более широкие «звездные» линии спектра.

Решающим оказалось выполненное в Канаде Пласкеттом и Пирсом сопоставление интенсивности линий межзвездного кальция с расстоянием до звезд. Чем звезда дальше, тем интенсивнее ее линии межзвездного кальция. Но так и должно быть, если кальций заполняет всю межзвездную среду. Чем дальше от нас звезда, тем длиннее путь ее луча, прежде чем он дойдет до нас, и тем больше поглощающих атомов кальция он встретит на своем пути. Чем больше атомов кальция поглотит свет звезды, тем больше он ослабится и тем темнее и интенсивнее будет линия поглощения в спектре. С этим объяснением пришлось согласиться.

Мало того, теперь мы имеем возможность, установив из наблюдений связь между интенсивностью линий ионизованного кальция и известными расстояниями до звезд, определять по интенсивности этих линий расстояние до тех горячих звезд, для которых они еще не известны. Спасибо межзвездному кальцию! - должны сказать мы во многих случаях, так как часто у нас не бывает другого способа определить расстояние до какой-нибудь звезды.

Пласкетт и Пирс сумели также доказать, что межзвездный кальций участвует в том общем вращении, которым охвачены все звезды нашей звездной системы. Сопоставляя лучевые скорости звезд, вызванные этим вращением, с лучевой скоростью межзвездного кальция (по сдвигу его линий в спектрах тех же звезд ), убедились, что последняя вдвое меньше, чем та лучевая скорость, которая следует для данной звезды по теории вращения Галактики. Но вдвое меньшую скорость относительно Солнца при вращении Галактики должна иметь точка, вдвое более близкая. Вывод отсюда один: межзвездный кальций участвует во вращении всей звездной системы, вместе со звездами и по тем же законам, так как центр тяжести того столба газа, который находится между любой звездой и нами, во всех случаях совпадает с его серединой. Это значит, что в пространстве между звездами кальций расположен довольно равномерно.

Впрочем, позднее выяснилось, что, как и космическая поглощающая пыль, кальций концентрируется к плоскости Млечного Пути. Выяснилось и то, что он расположен не непрерывной средой, а скорее в виде многочисленных облаков. Размеры некоторых облаков кальция доходят до 2000 световых лет.

Пока свойства атомов не были хорошо изучены физиками, исключительное или по крайней мере преобладающее нахождение именно кальция между звездами вызывало недоумение. Потом выяснилось, что ионизованный кальций поглощает свет главным образом в тех двух своих линиях, которые находятся в легко наблюдаемой части спектра. Атомы других элементов поглощают свет либо в очень многих линиях, как, например, железо, либо в такой области спектра (ультрафиолетовой), которая недоступна для изучения из-за его полного поглощения в нашей атмосфере. Поэтому-то линии других межзвездных атомов, если они и есть, либо вообще не могут быть обнаружены, либо они менее заметны, потому что их общее поглощение разбивается на много разных поглощений - в каждой линии понемногу. Таким образом, нет оснований считать ионизованный кальций единственным или преобладающим газом в межзвездных недрах, он только заявляет о своем присутствии «крикливее» других.

Можно все же попытаться найти и другие межзвездные газы, хотя бы слабые следы их, - «кто ищет, тот всегда найдет!». И действительно, после специальных поисков в спектрах звезд был найден межзвездный натрий, а в самые последние годы обнаружили еще нейтральный кальций, ионизованный титан, нейтральный калий и даже железо! Кроме того, в конце тридцатых годов были найдены еще межзвездные молекулы нейтрального и ионизованного углеводорода CH и CH + , циана CN, NaH, а также некоторые линии неизвестного еще пока происхождения. Средняя плотность поглощающего межзвездного газа в несколько тысяч раз меньше плотности излучающих свет газовых туманностей.

Все, что известно сейчас о межзвездном газе, хорошо укладывается в единую теоретическую картину, рисующую физику газовых туманностей следующим образом.

Атомы газа, так или иначе попавшего в межзвездное пространство, ионизуются и возбуждаются квантами света, излучаемого звездами. С этими квантами они изредка сталкиваются. Мы сказали - изредка, потому что вдали от звезд через квадратный сантиметр поверхности проходит очень мало этих квантов. Так же редко происходит встреча иона со свободным электроном, при которой он восстанавливает свою структуру, реже, чем в газовых туманностях с их большей плотностью. Пока атом ионизованного кальция странствует в пространстве, терпеливо ожидая встречи с каким-либо заблудшим электроном, на него может налететь какой-нибудь квант света звезды, соответствующий длине волны 3933 Å, и возбудить его до высшего энергетического состояния. Не будучи в состоянии переживать такое возбуждение дольше одной десятимиллионной доли секунды, атом вернется к исходному нормальному или невозбужденному, состоянию. При этом он излучит обратно поглощенный было им квант энергии с длиной волны 3933 Å. Но его он пошлет уже не в том направлении, откуда получил, а в каком-либо ином. Так ион кальция, находящийся между нами и звездой, перехватывая кванты ее света, идущие к нам, будет их отбрасывать то туда, то сюда, будет рассеивать свет, и до нас его дойдет меньше, чем дошло бы без этого вмешательства. В результате в этой длине волны свет звезды ослабится, и в ее спектре мы увидим темную линию. Подобно этому ведут себя и другие межзвездные атомы.

Зная структуру атомов и их способность к поглощению, можно по интенсивности линий оценить их число на пути звездного луча, а зная расстояние до звезды, вычислить и плотность межзвездного газа.

Первые шаги, сделанные в этом направлении, дают для межзвездного ионизованного кальция плотность порядка 4·10 -32 г/см³. Полная же плотность межзвездного газа значительно больше и по оценке Эддингтона составляет не менее 10 -24 г/см³. Если бы этот газ состоял из одного лишь водорода, то при такой плотности в одном кубическом сантиметре содержалось бы только по одному атому, тогда как в таком же объеме комнатного воздуха их содержится десять миллиардов миллиардов!

В действительности дело почти так и обстоит, так как водород на самом деле является главной составной частью межзвездного газа. Следующее за ним место занимают кислород и натрий, но на водород приходится более 90% атомов всей межзвездной среды, включая космическую пыль и метеориты. На долю последних приходится, как оказывается, ничтожная доля массы всей межзвездной среды и больше всего в ней весит самый легкий из газов!

К сожалению, межзвездный водород в поглощении не обнаружен оптическими методами и едва ли даже будет обнаружен, потому что в большинстве уголков нашей Вселенной подавляющее число атомов водорода находится в невозбужденном состоянии и потому поглощает энергию в невидимой далекой ультрафиолетовой области спектра.

Некоторая надежда увидеть знакомые линии водорода, но не в поглощении, а в излучении, все же есть. Они могут возникать, когда свободные электроны будут захватываться ядрами водорода и возвращаться к ближайшей к ядру орбите с наименьшей энергией каскадами - со ступеньки на ступеньку, задерживаясь на время на второй от ядра орбите. Такие случаи будут не часты, и излучение ярких линий межзвездного водорода должно быть слабым.

Путем многочасовых экспозиций О. Струве удалось обнаружить в некоторых обширных областях Млечного Пути слабые линии излучения водорода. Это и есть сигнал в видимых лучах от межзвездного водорода, но автор этой книги думает, что нередко мы тут имеем дело с проекцией друг на друга больших, далеких от нас и очень разреженных диффузных газовых туманностей. Будучи слабы и неразличимы по отдельности, они-то и создают впечатление неопределенно широкой излучающей водородной области H II.

Это подтверждается тем, что, кроме линий водорода, в тех же областях неба были обнаружены яркие линии запрещенного азота и кислорода, т. е. был получен обычный спектр газовых туманностей. К тому же в этих областях были как раз обнаружены и горячие звезды спектрального класса О, которые всегда возбуждают свечение газовых туманностей.

Однако не только существование, но и распределение в пространстве, и скорости движения межзвездного водорода в настоящее время надежно установлены по его радиоизлучению. Подробнее об этом мы расскажем в главе 10.

По оценке Дэнхема и О. Струве плотность отдельных газов в межзвездном пространстве, определенная по интенсивности как линий поглощения, так и излучения, такова:

Для межзвездного вещества, на основании анализа наблюдаемого движения звезд, нельзя допустить плотность больше чем 6·10 -24 г/см³, и вероятнее всего именно эта величина, совпадающая с оценкой, приведенной выше. Любопытно, что по некоторым оценкам средняя плотность межпланетного пространства в Солнечной системе, если иметь в виду его заполнение метеоритной материей, составляет 5·10 -25 г/см³. Это даже меньше, чем плотность межзвездного пространства. По оценке Гринстейна плотность межзвездной пыли (исключая газ) составляет 2·10 -25 г/см³. Так, вероятно, пыль между звездами по своей массе уступает место межзвездным газам!

В 1932 г. американский радиофизик Янский обнаружил радиоизлучение Млечного Пути. В метровом диапазоне оно очень сильно. Как выяснилось, это радиоизлучение имеет два источника. Одним из них является скопление в полосе Млечного Пути множества газовых туманностей. Мы видим из них только самые близкие или самые яркие. Видеть их далеко от нас мешает и поглощение света космической пылью. Но радиоволны эта пыль почти не задерживает и радиоизлучение далеких туманностей сливается в сплошной «радиошум» вдоль полосы Млечного Пути. Составлены карты неба, показывающие его «яркость» в разных местах в радиодиапазоне на разных длинах волн.

Другим источником радиоизлучения является торможение релятивистских электронов в межзвездных магнитных полях. Существование межзвездных магнитных полей строго доказано к середине шестидесятых годов. Релятивистские электроны входят и в состав космических лучей. Как мы уже говорили, при торможении релятивистских электронов в магнитном поле возникает излучение, в частности, в радиодиапазоне.

Водород ионизуется горячими звездами, которых мало и которые образуют сравнительно тонкий слой, заполняя его далеко не целиком. Дальше от слоя и в этом слое, но ближе к центру нашей звездной системы, горячих звезд и ионизованного водорода тоже нет. Там везде водород может быть, но он будет не ионизован. И.С. Шкловский предвычислил, что нейтральный водород должен испускать в радиодиапазоне линию излучения с длиной волны 21 см и что она должна быть достаточно яркой для ее обнаружения радиотелескопами. Наблюдения вскоре это подтвердили. Так холодный невидимый нейтральный водород стал доступен для изучения почти во всем объеме нашей звездной системы. Ведь на энергию волн длиной 21 см поглощение межзвездной пылью не влияет!

По смещению линии излучения, испускаемой облаком нейтрального водорода, можно установить скорость облака по лучу зрения. Зная закон вращения нашей звездной системы и скорость облака, можно вычислить и расстояние до него. По интенсивности линии определяют плотность облаков, а изучение их распределения в пространстве чрезвычайно обогащает наше представление о строении нашей звездной системы. В нашей Галактике молекулярного водорода H 2 почти столько же по массе, сколько атомарного: около 10 9 масс Солнца.

Пыль, межзвездный газ и горячие диффузные туманности концентрируются в плоском слое толщиной около 600 световых лет, что мало сравнительно с размерами всей нашей звездной системы. Но отдельные облака горячего и холодного газа встречаются и на больших расстояниях от этого слоя, где они имеют значительные хаотические движения.

В 1963 г. радиотелескоп принес открытие в межзвездном пространстве радиолинии гидроксила ОН. Возможность ее наблюдения предсказывалась. Ее длина волны около 18 см. Линия эта сложная и состоит из нескольких компонент. Она наблюдается и в поглощении, и в излучении, обычно в области горячих газовых туманностей, но далеко не всех. Комплекс линий ОН обнаружил ряд пока еще крайне загадочных явлений. В частности, обнаружилась переменность яркости, очень различная у разных компонент линии ото дня ко дню. Будущее развитие науки вскоре, вероятно, даст объяснение этим загадкам.

Инфракрасными наблюдениями был обнаружен межзвездный гелий, а в 1965-1966 гг. он же был обнаружен и в радиоизлучении. Одна из главных его линий излучения имеет длину волны около 6 см, а другая находится вблизи радиолинии водорода с длиной волны 21 см.

В общем к 1980 г., помимо атомов, в межзвездном пространстве, преимущественно методами радиоастрономии, открыто почти 50 молекул, двух- и многоатомных. Среди последних есть сложные, содержащие до 11 атомов. В их числе есть вода, аммиак, муравьиная кислота и метиловый спирт. Обнаружены также типичные для состава комет CO, CN.

К 1980 г. стало возможно заключить, что содержание разных химических элементов в межзвездном газе заметно отличается от процента их в газах, содержащихся в атмосферах звезд и Солнца, хотя часть этих атмосфер постепенно рассеивается в пространстве, а часть межзвездной среды аккумулируется на звездах, захватывается ими (аккреция газов). Например, в некоторых направлениях обнаружен недостаток многих атомов - по отношению к водороду их число там в 3 и более раз меньше, чем в атмосфере Солнца. Такие аномалии носят, однако, местный характер.

Как могло межзвездное пространство наполниться газом? Что старше - рассеянный межзвездный газ и туманности или же звезды? К этому вопросу мы вернемся в главе 11.

Межзвёздный газ

Межзвёздный газ - это разрежённая газовая среда, заполняющая всё пространство между звёздами. Межзвёздный газ прозрачен. Полная масса межзвёздного газа в Галактике превышает 10 миллиардов масс Солнца или несколько процентов суммарной массы всех звёзд нашей Галактики. Средняя концентрация атомов межзвёздного газа составляет менее 1 атома в см³. Основная его масса заключена вблизи плоскости Галактики в слое толщиной несколько сотен парсек. Плотность газа в среднем составляет около 10 −21 кг/м³. Химический состав примерно такой же, как и у большинства звёзд: он состоит из водорода и гелия (90 % и 10 % по числу атомов, соответственно) с небольшой примесью более тяжёлых элементов. В зависимости от температуры и плотности межзвёздный газ пребывает в молекулярном, атомарном или ионизованном состояниях. Наблюдаются холодные молекулярные облака, разреженный межоблачный газ, облака ионизованного водорода с температурой около 10 тыс. К. (Туманность Ориона), и обширные области разреженного и очень горячего газа с температурой около миллиона К. Ультрафиолетовые лучи, в отличие от лучей видимого света, поглощаются газом и отдают ему свою энергию. Благодаря этому горячие звёзды своим ультрафиолетовым излучением нагревают окружающий газ до температуры примерно 10 000 К. Нагретый газ начинает сам излучать свет, и мы наблюдаем его как светлую газовую туманность. Более холодный, «невидимый» газ наблюдают радиоастрономическими методами. Атомы водорода в разреженной среде излучают радиоволны на длине волны около 21 см. Поэтому от областей межзвёздного газа непрерывно распространяются потоки радиоволн. Принимая и анализируя это излучение, учёные узнают о плотности, температуре и движении межзвёздного газа в космическом пространстве.


Wikimedia Foundation . 2010 .

Смотреть что такое "Межзвёздный газ" в других словарях:

    Осн. компонент межзвездной среды, составляющий ок. 99% её массы. M. г. заполняет практически весь объём галактик. Наиб, изучен M. г. в Галактике. M. г. характеризуется большим разнообразием возникающих в нём структур, физ. условий и протекающих… … Физическая энциклопедия

    Одна из основных составляющих межзвёздной среды (См. Межзвёздная среда). Состоит в основном из водорода и гелия; общая масса других элементов меньше 3 % …

    Материя, заполняющая пространство между звёздами внутри галактик. Материя в пространстве между галактиками наз. межгалактич. средой (см. Скопления галактик. Межгалактический газ). Газ в оболочках вокруг звёзд (околозвёздные оболочки) часто… … Физическая энциклопедия

    Межзвёздная пыль твёрдые микроскопические частицы, наряду с межзвёздным газом заполняющие пространство между звёзд. В настоящее время считается что пылинки имеют тугоплавкое ядро, окруженное органическим веществом или ледяной оболочкой.… … Википедия

    Карта местного межзвёздного облака Межзвёздная среда (МЗС) вещество и поля, заполняющие межзвёздное пространство внутри галактик … Википедия

    Разреженное вещество, межзвёздный газ и мельчайшие пылевые частицы, заполняющие пространство между звёздами в нашей и других Галактиках. В состав М. с. входят, кроме того, Космические лучи, межзвёздные магнитные поля (См. Межзвёздное… … Большая советская энциклопедия

    Карта местного межзвездного облака Межзвёздная среда (МЗС) это вещество и поля, заполняющие межзвёздное пространство внутри галактик. Состав: межзвёздный газ, пыль(1 % от массы газа), межзвёздные магнитные поля,космические лучи, а также… … Википедия

    Более 200 новообразованных звёзд внутри облака известного как NGC 604 в галактике Треугольника. Звёзды облучают газ высокоэнергетически … Википедия

    Карта межзвездного газа в нашей Галактике Межзвёздный газ это разреженная газовая среда, заполняющая всё пространство между звёздами. Межзвёздный газ прозрачен. Полная масса межзвёздного газа в Галактике превышает 10 миллиардов масс Солнца или… … Википедия

    Звёздный ветер процесс истечения вещества из звёзд в межзвёздное пространство. Содержание 1 Определение 2 Источники энергии … Википедия