Биологический ритм организма. Ритмы жизни как универсальное свойство живых систем




Биологические ритмы организма – это изменения характера и интенсивности биологических процессов в организме, которые имеют определенную периодичность. Они присутствуют в каждом живом организме и являются настолько точными, что их даже называют «биологическими часами» или же «внутренними часами». На самом деле, именно биоритмы управляют нашими жизнями, хотя мы в этом даже не отдаем себе отчета. Но ведь если задуматься, то важность биологических ритмов человека становится очевидной, ведь даже основной орган – сердце, работает в определенном ритме, который задается теми самыми «внутренними часами». Но что же такое эти биологические ритмы и какую именно роль они играют в человеческих жизнях, каково их значение? Давайте несколько более подробно разберемся в этих вопросах.

Виды биологических ритмов

Все биологические ритмы делятся по определенным типам. При этом существует несколько разнообразных классификаций, основывающихся на разных критериях. Самой распространенной, можно даже сказать, основной классификацией, является та, в которой критерием считается длина периода биологических ритмов.

Согласно этой классификации, существуют циркадианные, ультрадианные, инфрадианные, циркалунарные и лунно-месячные биологические ритмы. Циркадианные ритмы имеют периодичность около двадцати четырех часов и являются наиболее изученными из всех. Ультрадианные ритмы – околочасовые. Инфрадианные – ритмы, периодичность которых составляет больше, чем двадцать четыре часа. Остальные два биологических ритма связаны с лунными фазами.

Также есть классификация биоритмов по источнику происхождения. Они разделяются на физиологические, геофизические и геосоциальные. Физиологические – это биоритмы внутренних органов человека, которые не зависят от внешних факторов. Геофизические биоритмы уже входят в плотную зависимость от внешних факторов окружающей среды. А геосоциальные ритмы не являются врожденными в отличие от первых двух и формируются под влиянием, как факторов окружающей среды, так и под влиянием социальных факторов.

Роль биологических ритмов в жизни человека

Существует, весьма условная, по мнению ученых хронобиологов, теория трех биоритмов. Согласно ей, состояние человека определяется тремя биоритмами: физическим, интеллектуальным и эмоциональным. И бывают дни, когда одни биоритмы активнее других, так как все они обладают разной степенью периодичности. Именно поэтому в определенные дни и определенное время бывают всплески, например, физической активности при плохом настроении, или же выбросы позитивных эмоций, а, быть может, появляется огромно желание заняться какой-то умственной деятельностью.

То есть, от биоритмов полностью зависит активность человеческого организма и его состояние. Поэтому не стоит «насиловать» свой организм. Напротив, нужно прислушиваться к нему и грамотно использовать свои собственные ресурсы.

Например, сон и его значение, как биологического ритма, пожалуй, является одним из самых важных. Именно поэтому никак нельзя ложиться слишком поздно или спать слишком мало, ведь из этого следует нарушение абсолютно всех биоритмов организма. Вообще ученными установлено, что наилучший сон происходит в период с двадцати трех часов до семи. А ложиться после полуночи весьма вредно для умственной активности, то есть, интеллектуальных биоритмов.

Нельзя забывать и о том, что человек все же является частью природы, поэтому на него оказывают влияние и фазы луны. Например, многие люди ощущают упадок сил в новолуние и повышенную активность во время полнолуния.

Биологические ритмы функций организма

Согласно наиболее распространенной гипотезе, живой организм является независимой колебательной системой, которая характеризуется целым набором внутренне связанных ритмов. Они позволяют организму успешно приспособиться к циклическим изменениям окружающей среды. Ученые полагают, что в многовековой борьбе за существование выживали лишь те организмы, которые могли не только уловить изменения в природных условиях, но и настроить ритмический аппарат в такт внешним колебаниям, что означало наилучшее приспособление к окружающей среде. Например, осенью многие птицы улетают на юг, а некоторые животные впадают в спячку.

Зимняя спячка помогает животным пережить неблагоприятный период. Они точно определяют время для спячки.

Ученые убедительно доказали существование внутренней, природной обусловленности основных биологических ритмов в организме человека. Так, у однояйцевых близнецов эти ритмы сходны. Известен такой случай: два брата были разлучены вскоре после рождения и воспитывались в разных семьях, не зная друг друга. Однако оба проявляли склонность к одним и тем же занятиям, обладали одинаковыми вкусами и выбрали одну и ту же специальность. Но самое поразительное заключалось в том, что братья-близнецы росли и развивались по одной генетической программе, жили по одним биологическим часам. Подобных примеров можно привести достаточно много. Однако в науке на природу биологических ритмов существует и противоположная точка зрения.

«Система, насквозь пронизанная ритмами» – так образно назвал человека один из основоположников отечественной школы исследователей биологических ритмов Б. С. Алякринский. Основной дирижер этой системы – суточный ритм . В этом ритме изменяются все функции организма: в настоящее время наука располагает достоверными сведениями о суточной периодичности более 400 функций и процессов. В сложном ансамбле суточных ритмов одним из главных факторов ученые считают ритм температуры тела: ночью ее показатели самые низкие, утром температура повышается и достигает максимума к 18 часам. Такой ритм на протяжении долгих лет эволюции позволял подстраивать активность человеческого организма к периодическим температурным колебаниям окружающей среды.

Неизвестная и не признанная ранее хронобиология, хотя и утверждавшая свое старинное происхождение от самого Гиппократа, была принята как равноправная среди других наук весной 1960 года в американском городе Колд-Спринг-Харборе на международном симпозиуме, посвященном исследованию ритмов в живых системах. В настоящее время научные общества хронобиологов существуют во всех развитых странах мира. Их деятельность координируют европейское и международное общества, причем последнее издает специальный журнал и каждые два года собирает ученых на свои съезды.

Давно уже человек не испытывает таких резких колебаний окружающей среды: одежда и жилище обеспечили ему искусственную температурную среду, но температура тела варьирует, как и много веков назад. И эти колебания имеют для организма не меньшее значение, ведь температура определяет скорость протекания биохимических реакций, которые являются материальной основой всех проявлений жизнедеятельности человека. Днем температура выше – увеличивается активность биохимических реакций и более интенсивно происходит обмен веществ в организме; следовательно, выше и уровень бодрствования. К вечеру температура тела понижается, и человеку легче заснуть.

Ритм температуры тела повторяют показатели многих систем организма: это прежде всего пульс, артериальное давление, дыхание и др.

В синхронизации ритмов природа достигла совершенства. Так, к моменту пробуждения человека в крови накапливаются биологически активные вещества, адреналин, гормоны коры надпочечников и др. Все это подготавливает человека к дневному активному бодрствованию: повышается артериальное давление, частота пульса, возрастают мышечная сила, работоспособность и выносливость.

Пример целесообразности существования суточного ритма демонстрируют почки. В основном структурном образовании почек (клубочки) происходит фильтрация крови, в результате чего образуется «первичная моча». Однако она содержит еще множество необходимых для организма веществ, поэтому в другом отделе почек (канальцах) эти вещества поступают обратно в кровь. В ближайшем к клубочкам отделе канальцев (так называемом проксимальном) всасываются белки, фосфор, аминокислоты и другие соединения. В дальнем (или дистальном) отделе канальцев всасывается вода, и тем самым уменьшается объем мочи. В результате хронобиологических исследований установлено, что проксимальный отдел канальцев почек наиболее активен в утренние и дневные часы, поэтому в это время выведение белка, фосфора и других веществ минимально. Дистальный же отдел канальцев наиболее интенсивно функционирует в ночные и ранние утренние часы: вода всасывается, и объем мочи в ночное время уменьшается. Одновременно с этим большее выведение фосфатов облегчает освобождение организма от ненужных кислот.

В реализации ритмических колебаний функций организма особая роль принадлежит эндокринной системе. Свет, падая на сетчатку глаза, через зрительные нервы передает возбуждение в один из важнейших отделов головного мозга – гипоталамус. Гипоталамус – это высший вегетативный центр, осуществляющий сложную координацию функций внутренних органов и систем в целостную деятельность организма. Он связан с гипофизом – основным регулятором работы желез внутренней секреции. Итак, гипоталамус – гипофиз – железы внутренней секреции – «рабочие» органы. В результате работы этой цепочки меняется гормональный фон, а вместе с ним и деятельность физиологических систем. Стероидные гормоны оказывают непосредственное влияние и на состояние нервных клеток, меняя уровень их возбудимости, поэтому параллельно с колебаниями гормонального уровня меняется настроение человека. Это определяет высокий уровень функций организма днем и низкий – ночью.

Во время одной из пересадок сердца, сделанной человеку, в сердце остался функционировать пейсмекер – тот участок сердечной мышцы, который задает ритм всему сердцу. Его суточный ритм несколько отличался от суточного ритма реципиента, т. е. больного, получившего новое сердце. И вот в английском журнале «Nature» Крафт, Александер, Фостер, Личмен и Линскомб описали этот удивительный случай. У пациента суточный ритм сердца, или частоты пульса, на 135 минут отличался по фазе от суточного ритма температуры. Здесь следует повторить, что наибольшая частота пульса практически совпадает с максимальной температурой тела. Не случайно, если нет термометра, врач для определения температуры подсчитывает пульс или число дыханий: при ее повышении на 1 °C происходит учащение сердечных сокращений примерно на 10–15 ударов в минуту, а частота пульса соотносится с частотой дыхания как 1: 4.

Ученые НИИ экспериментальной медицины РАМН пришли к выводу, что в организме человека пульсирует не только сердце, но и… кишечник, когда он выполняет свою эвакуационную функцию, т. е. очищается. Признаком заболевания следует считать не только редкий (1–2 раза в неделю) стул, но и нарушение суточного ритма. Обратив внимание на это отклонение от нормы, можно предупредить развитие тяжелых недугов, которые возникают вследствие запоров. Известно, что ритм обмена веществ сохраняется в так называемой тканевой культуре, т. е. при выращивании тканей «в пробирке».

Исследователи считают, что для человека преобладающее значение имеют социальные факторы: ритм сна и бодрствования, режим труда и отдыха, работа общественных учреждений, транспорта и т. п. Их условились называть «социальными датчиками времени» в отличие от «природных датчиков времени» (свет, температура окружающей среды, ионный состав воздуха, напряженность электрического и магнитного полей Земли и т. п.).

Социальная природа человека и созданная им искусственная окружающая среда способствуют тому, что в обычном состоянии он не чувствует выраженных сезонных колебаний функционального состояния. Тем не менее они существуют и отчетливо проявляются – прежде всего при заболеваниях. Учет этих колебаний при профилактике, диагностике и лечении заболеваний составляет основу практической хронобиологии.

Из книги Путь в страну здоровья автора Юрий Авксентьевич Мерзляков

БИОЛОГИЧЕСКИЕ РИТМЫ И НАША ЖИЗНЬ К. Станиславский: «Основа всей жизни человека – ритм, данный каждому его природой…» Уже несколько десятилетий изучаются биологические ритмы человеческой жизни. Выясняются удивительные вещи: все функции нашего организма проходят под

Из книги Как избавиться от бессонницы автора Людмила Васильевна Бережкова

Глава 1. Что известно о нормальном сне. сон и биологические ритмы Сон имеет прямое отношение к биологическим ритмам человека. Что же они собой представляют?Установлено, что в физическом мире, где существуют все живые организмы, и в том числе человек, происходят

Из книги Полная энциклопедия оздоровления автора Геннадий Петрович Малахов

Закон свертывания и тренируемости функций человеческого организма Жизнь от зачатия до рождения После оплодотворения яйцеклетка переходит в активное состояние – в ней появляется центр формообразования и начинается деление. Зародышевая стадия продолжается от

Из книги Лишний вес. Новая диетология автора Марк Яковлевич Жолондз

Глава 17. Прогрессирующее ожирение со снижением половых функций организма Сравнительно редкий вариант ожирения, причем ожирения прогрессирующего, связан со снижением половых функций организма. Для правильного понимания этого вопроса необходимо познакомиться с

Из книги Удовольствие: Творческий подход к жизни автора Александр Лоуэн

Ритмы естественных функций Согласно филогенетике, жизнь зарождалась в море, и большинству людей возвращение к морскому побережью доставляет удовольствие и приносит много приятных моментов. Находясь в непосредственной близости к океану, мы чувствуем свободу и единение

Из книги Метеочувствительность и здоровье автора Светлана Валерьевна Дубровская

Биологические ритмы организма человека и здоровье С момента появления на свет человек функционирует в трех биологических ритмах – физическом, эмоциональном и интеллектуальном. Это обстоятельство не зависит от места его проживания, национальности, расы и других

Из книги Тайны нашего мозга автора Сандра Амодт

ГЛАВА 4. Удивительные ритмы: биологические часы и нарушение суточного ритма Помните, когда вы были совсем ребенком, дядя Ларри поспорил с вами, что вы не сможете идти и синхронно с шагами жевать жвачку? Сейчас это пари может показаться совсем смешным, но тогда, получив свою

Из книги Аэробика для лица автора Мария Борисовна Кановская

Ритмы нашего организма и уход за кожей Известный хронобиолог доктор Франц Хальберг из американского университета штата Миннесота утверждает: «У человеческого организма существует свое расписание жизни». Понятно, что эффективность ухода за кожей резко возрастет, если

автора

Глава 4 Практика восстановления функций организма

Из книги Жизнь после инсульта. Реальный опыт восстановления после «удара», доступный каждому! автора Сергей Викентьевич Кузнецов

Глава 4 Практика восстановления функций организма

Из книги Экологичное питание: натуральное, природное, живое! автора Любава Живая

Из книги Азбука экологичного питания автора Любава Живая

Суточные ритмы организма Белковые продукты лучше всего употреблять в середине дня, когда активность пищеварительных ферментов максимальная. Фрукты желательно съесть утром или в полдник, соки пить с утра.Не забывайте о суточных ритмах организма. Организм тоже должен

Из книги Лучшее для здоровья от Брэгга до Болотова. Большой справочник современного оздоровления автора Андрей Моховой

Восстановление естественных функций организма После голодания людям уже не нужно такое количество пищи, которое требовалось прежде, потому что она гораздо лучше усваивается. Меньшее количество еды снимает тяжелый груз с внутренних органов и кровеносной системы. Брэгг

Из книги Аэробика для лица: омолаживающие упражнения автора Мария Борисовна Кановская

Ритмы нашего организма и уход за кожей С 23 до 4 часов. Самое подходящее время для сна, которое вознаградит вас красотой и здоровьем. Как раз в эти часы обновляется наибольшее число клеток. Если у человека глубокий сон, то клетки способны делиться в восемь

Из книги Биоритмы, или Как стать здоровым автора Валерий Анатольевич Доскин

Космические ритмы настраивают биологические часы Американский профессор биологии Фрэнк А. Браун считает, что ритмические колебания, наблюдаемые в живых организмах, есть не что иное, как результат непрерывного воздействия космических и геофизических факторов

Из книги Мозг против старения автора Геннадий Михайлович Кибардин

Глава 1 Биологические ритмы Поиски истины стоит начать с малого. Ответ невозможно найти только на одной странице. Постарайтесь не спеша прочесть всю книгу от «корочки до корочки». Зерна истины рассыпаны повсюду. Где-то их больше, а где-то меньше. Только полностью изучив

Любое биологическое явление, любая физиологическая реакция имеют периодическую природу, так как у живых организмов, в течение многих миллионов лет живущих в условиях ритмических изменений геофизических параметров среды, выработались и способы приспособления к ним.

Ритмичность - фундаментальная характеристика функционирования живого организма - прямо связана с механизмами обратной связи, саморегуляции и адаптации, а согласование ритмических циклов достигается благодаря важной особенности колебательных процессов - стремлению к синхронизации. Основное назначение ритмичности заключается в поддержании гомеостаза организма при изменении факторов внешней среды. При этом гомеостаз понимается не как статичная устойчивость внутренней среды, а как динамический ритмический процесс - ритмостаз, или гомеокинез.

Собственные ритмы организма не автономны, а связаны с ритмическими процессами внешней среды: сменой дня и ночи, годовыми сезонами и т.д.

Внешние задаватели времени

В терминологии, характеризующей внешние факторы и порождаемые ими внутренние колебания, нет единообразия. Например, существуют названия «внешние и внутренние датчики времени», «задаватели времени», «внутренние биологические часы», «генераторы внутренних колебаний» - «внутренние осцилляторы».

Биологический ритм - периодическое повторение некоторого процесса в биологической системе через более или менее регулярные промежутки времени. Биоритм - не просто повторяющийся, а и самоподдерживающийся и самовоспроизводящийся процесс. Биологические ритмы характеризуются периодом, частотой, фазой и амплитудой колебаний.

Период - время между двумя одноимёнными точками в волнообразно изменяющемся процессе, т.е. продолжительность одного цикла до первого повтора.

Частота. Ритмы также могут быть охарактеризованы частотой - числом циклов, совершающихся в единицу времени. Частота ритмов может определяться частотой периодических процессов, протекающих во внешней среде.

Амплитуда - наибольшее отклонение исследуемого показателя в какую-либо сторону от средней. Амплитуда иногда выражается через мезор, т.е. в процентах от средней величины всех её значений, полученных при регистрации ритма. Удвоенная амплитуда равна размаху колебаний.

Фаза. Термин «фаза» относится к любой отдельно выделенной части цикла. Чаще всего этим термином пользуются, описывая связь одного ритма с другим. Например, пик активности у одних животных совпадает по фазе с тёмным периодом цикла свет-темнота, у других - со светлым периодом. Если два выделенных отрезка времени не совпадают, то вводится термин разность по фазе, выраженная в соответствующих долях периода. Опережение или отставание по фазе означает, что событие произошло раньше или позже ожидаемого срока. Фаза выражается в градусах. Например, если максимум одного ритма соответствует минимуму другого, то разность по фазе между ними составляет 180?.

Акрофаза - точка времени в периоде, когда отмечается максимальное значение исследуемого показателя. При регистрации акрофазы (батифазы) в течение нескольких циклов отмечено, что время её наступления варьирует в определённых пределах, и это время выделено как зона блуждания фазы. Величина зоны блуждания фазы, вероятно, связана с периодом (частотой) ритма. На частоту и фазу биоритмов влияют не только частота и фаза внешнего колебательного процесса, но и его уровень.

Существует циркадианное правило: для дневных организмов характерна положительная корреляция между освещённостью и частотой циркадианного ритма, а для ночных - отрицательная корреляция.

Классификации биоритмов

Классификация ритмов зависит от выбранных критериев: по их собственным характеристикам, по функциям, которые они выполня- ют, роду процесса, порождающего колебания, а также по биосистеме, в которой наблюдается цикличность.

Спектр возможных ритмов жизни охватывает широкий диапазон масштабов времени - от волновых свойств элементарных частиц

(микроритмов) до глобальных циклов биосферы (макро- и мегаритмов). Пределы их длительности - от многих лет до миллисекунд, группировка иерархическая, но границы между группами в боль- шинстве случаев условны. Верхнюю границу среднечастотных ритмов устанавливают на отметке от 28 ч до 3 с. Периоды от 28 ч до 7 суток либо относят к единой группе мезоритмов, либо часть их (до 3 суток) включают в среднечастотные, а от 4 суток - в низкочастотные.

Ритмы подразделяют по следующим критериям (Ю. Ашофф,

1984):

По собственным характеристикам (например, по периоду);

По биологической системе (например, популяция);

По роду процесса, порождающего ритм;

По функции, которую ритм выполняет.

Предложена классификация, основанная на структурно-функциональных уровнях организации жизни:

Ритмы молекулярного уровня с периодом секундно-минутного диапазона;

Клеточные - от околочасовых до окологодовых; организменные - от околосуточных до многолетних;

Популяционно-видовые - от окологодовых до ритмов длительностью десятки, сотни и тысячи лет;

Биогеоценотические - от сотен тысяч до миллионов лет;

Биосферные ритмы - с периодом сотни миллионов лет.

Наиболее популярна классификация биологических ритмов F. Halberg и A. Reinberg (1967) (рис. 4.1).

ОТДЕЛЬНЫЕ РИТМЫ

В живой природе наиболее отчётливо выражены ритмы с периодом около 24 ч - циркадианные (лат. circa - около, dies - день). Позднее префикс «circa» стали применять для остальных эндогенных ритмов,

Рис. 4-1. Классификация биоритмов (F. Halberg, A. Reinberg)

отвечающих циклам внешней среды: околоприливные, окололунные, окологодовые (circatidal, circalunar, circannual). Ритмы с периодом более коротким, чем циркадианные, определены как ультрадианные, с более длинным - инфрадианные. Среди инфрадианных ритмов выделяют циркасептидианные с периодом (7?3 суток), циркавигентидианные (21 ?3 суток), циркатригентидианные (30?5 суток) и цирканнуальные (1 год?2 мес.).

Ультрадианная ритмика

Если биологические ритмы этого диапазона расположить в порядке уменьшения их частоты, то получается ряд от многогерцовых до многочасовых колебаний. Наиболее высокой частотой (60-100 Гц) отличаются нервные импульсы, затем следуют колебания ЭЭГ с частотой от 0,5 до 70 Гц.

Декасекундные ритмы были зарегистрированы в биопотенциалах мозга. К этому диапазону относятся и колебания пульса, дыхания, перистальтики кишечника. Минутные ритмы характеризуют психолого-эмоциональное состояние человека: биоэлектрическая активность мышц, ЧСС и дыхания, амплитуда и частота движений изменяются в среднем через каждые 55 с.

Декаминутные (90 мин) ритмы были открыты в мозговых механизмах ночного сна, которые были названы медленно- и быстроволновой (или парадоксальной) фазами, при этом именно на вторую фазу приходятся сновидения, непроизвольные движения глаз. Такой же ритм в последующем был обнаружен в сверхмедленных колебаниях биопотенциалов бодрствующего мозга, связанных с временной динамикой внимания, бдительности оператора.

Околочасовые ритмы обнаружены не только на системном, но и на нижележащих иерархических уровнях. Этот ритм имеют многие происходящие на клеточном уровне явления: синтез белка, изменение клеточных размеров и массы, ферментативной активности, проницаемости клеточных мембран, секреции, электрической активности.

Циркадианные колебания

Циркадианная система - та основа, благодаря которой проявляются интегративная деятельность и регулирующая роль нейроэндокринной системы, осуществляющей точное и тонкое приспособление организма к постоянно меняющимся условиям окружающей среды.

Циркадианная периодичность обнаружена в интегральных показателях жизнедеятельности.

Работоспособность в ночное время снижается, и время выполнения задания, как при свете, так и в темноте ночью более продолжительное, чем днём в тех же условиях.

Тренировка в ранние утренние часы даёт несколько меньший эффект, чем в середине дня.

Работоспособность учащихся наиболее высока в предобеденные часы, к 14 ч отмечается значительное её снижение, второй её подъём приходится на 16-17 ч, затем наблюдается новый спад.

Суточная периодичность характерна не только для ВНД, но и для нижележащих иерархических систем организма.

Зарегистрированы 24-часовые изменения церебральной и кардиальной гемодинамики, ортостатической устойчивости.

Выявлен суточный ритм сопряжённости фаз сердечного цикла и дыхания.

В литературе имеются данные о ночном снижении лёгочной вентиляции и потребления кислорода, падении минутного объёма дыхания (МОД) у лиц молодого, зрелого и среднего возраста.

Циркадианная ритмичность присуща и функции системы пищеварения, в частности, слюноотделения, секреторной деятельности поджелудочной железы, синтетической функции печени, моторики желудка. Установлено, что наибольшая скорость секреции кислоты с желудочным соком наблюдается вечером, наименьшая - утром.

На уровне биохимической индивидуальности открыта суточная цикличность для некоторых веществ.

Концентрация макро- и микроэлементов: фосфора, цинка, марганца, натрия, калия, рубидия, цезия и хлора в крови чело- века, а также железа в сыворотке крови.

Суммарное содержание аминокислот и нейромедиаторов.

Основной обмен и связанный с ним уровень тиреотропного гормона гипофиза и гормонов щитовидной железы.

Система половых гормонов: тестостерон, андростерон, фолликулостимулирующий гормон, пролактин.

Гормоны нейроэндокринной системы регуляции стресса - АКТГ, кортизол, 17-оксикортикостероиды, что сопровожда-

ется цикличными изменениями уровня глюкозы и инсулина. Подобная ритмичность известна и для мелатонина.

Инфрадианные ритмы

Биоритмологами описаны не только суточные, но и многодневные (околонедельные, околомесячные) ритмы, охватывающие все иерар- хические уровни организма.

В литературе имеется анализ тонкого спектра колебаний (с периодом 3, 6, 9-10, 15-18, 23-24 и 28-32 дней) частоты сердечных сокращений, АД, мышечной силы.

Ритм 5-7-дневной длительности зафиксирован в динамике интенсивности энергетического обмена, массы и температуры тела человека.

Хорошо известны флюктуации результатов клинических анализов содержания в крови эритроцитов и лейкоцитов. У мужчин количество нейтрофилов в венозной крови изменяется с периодом от 14 до 23 дней.

Среди ритмов этого диапазона наиболее изучены месячные (лунные) циклы. Установлено, что в полнолуние количество случаев послеоперационных кровотечений на 82% больше, чем в другое время, в дни лунных фаз увеличивается частота возникновения инфаркта миокарда.

Цирканнуальные ритмы

В организме животных и человека обнаружены колебания различных физиологических процессов, период которых равен одному году - окологодовые (цирканнуальные), или сезонные ритмы. Цирканнуальная периодичность определена для возбудимости нервной системы, показателей гемодинамики, теплопродукции, реакции на острую холодовую нагрузку, содержание половых и других гормонов, нейромедиаторов, рост детей и др.

ХАРАКТЕРИСТИКА БИОРИТМОВ

При изучении периодических явлений в живых системах важно выяснить, отражает ли ритм, наблюдаемый в биологической системе, реакцию на внешнее по отношению к этой системе периодическое воздействие (экзогенный ритм, навязываемый задавателем ритма) или же ритм порождается внутри самой системы (эндогенный ритм), наконец, имеется ли сочетание экзогенного ритма и эндогенного генератора ритма.

Задаватели ритмов и функции

Внешние задаватели ритмов могут быть простыми и сложными.

Простые:

Подача пищи в одно и то же время, что вызывает простые реакции, ограничивающиеся, в основном, вовлечением в актив- ность пищеварительной системы;

Смена света и темноты - также относительно простой задаватель ритма, но он вовлекает в активность не только сон или бодрствование (т.е. одну систему), а весь организм.

Сложные:

Смена сезонов года, приводящая к длительным специфическим изменениям состояния организма, в частности, его реактивности, устойчивости по отношению к различным факторам: уровню обмена веществ, направленности обменных реакций, эндокринным сдвигам;

Периодические колебания солнечной активности, вызывающие зачастую замаскированные изменения в организме, в значительной мере зависящие от исходного состояния.

Связь времязадавателей с биоритмами

Современные нам представления о связи между экзогенными времязадавателями и эндогенными ритмами (представление о единых биологических часах, полиосцилляторная структура) приведены на рис. 4-2.

Гипотезы о единых биологических часах и полиосцилляторной временной структуре организма вполне совместимы.

Гипотеза централизованного управления внутренними колебательными процессами (наличие единых биологических часов) относится преимущественно к восприятию смены света и темноты и трансформации этих явлений в эндогенные биоритмы.

Рис. 4-2. Механизмы взаимодействия организма с внешними задавателями времени

Мультиосцилляторная модель биоритмов. Предполагается, что в многоклеточном организме может функционировать главный пейсмейкер, навязывающий свой ритм всем остальным системам. Не исключается существование (наряду с центральным водителем ритма) и второстепенных осцилляторов, также обладающих пейсмейкерными свойствами, но иерархически под- чинённых ведущему. По одному из вариантов этой гипотезы в организме могут функционировать разрозненные осцилляторы, которые образуют отдельные группы, работающие независимо друг от друга.

МЕХАНИЗМЫ РИТМОГЕНЕЗА

Существует несколько точек зрения на механизмы ритмогенеза. Возможно, что источником циркадианной ритмики являются циклические изменения АТФ в цитоплазме клеток или циклы метаболических реакций. Не исключено, что ритмы организма определяют биофизические эффекты, а именно влияние:

Гравитационного поля;

Космических лучей;

Электромагнитных полей (в том числе магнитного поля Земли);

Ионизации атмосферы и т.д.

Ритмы психической активности

Не только биологические и физиологические процессы, но и динамика психической деятельности, в том числе и эмоциональных состояний, подвержены закономерным колебаниям. Например, установлено, что бодрствующее сознание человека имеет волновую природу. Психологические ритмы могут быть систематизированы в тех же диапазонах, что и биологические.

Ультрадианные ритмы проявляются во флюктуациях порогов восприятия, времени двигательных и ассоциативных реакций, внимания. Соответствие био- и психоритмов в организме человека обеспечивает нормальную работу всех его органов и систем, так слух человека даёт наибольшую точность оценки интервала времени 0,5-0,7 с, что характерно для темпа движений при ходьбе.

Тактовые ритмы. В колебаниях психических процессов, кроме временных ритмов, были обнаружены так называемые тактовые ритмы, зависящие не от времени, а от номера пробы: человек не может постоянно одинаково реагировать на предъявляемые стиму-

лы, если в предыдущей пробе время реакции было коротким, то в следующий раз организм будет экономить энергию, что приведёт к снижению скорости реагирования и колебанию значения этого пока- зателя от пробы к пробе. Тактовые ритмы более выражены у детей, а у взрослых усиливаются при снижении функционального состояния нервной системы. При изучении умственного утомления выделены тактовые декасекундные, или двухминутные (0,95-2,3 мин) и десятиминутные (2,3-19 мин) ритмы.

Циркадианные ритмы вызывают значительные перестройки в деятельности организма, влияющие на психическое состояние и работоспособность человека. Так, электрическая чувствительность глаза изменяется на протяжении дня: в 9 ч утра она повышается, к 12 ч дня достигает максимума и затем снижается. Подобная суточная динамика присуща не только психическим процессам, но и психо- эмоциональным состояниям индивида. В литературе описаны суточные ритмы интеллектуальной работоспособности, субъективной готовности к работе и способности к сосредоточению, кратковременной памяти. У лиц с утренним типом работоспособности отмечается более высокий уровень тревоги, они отличаются меньшей устойчивостью к фрустрирующим факторам. Люди утреннего и вечернего типов имеют разный порог возбудимости, склонность к экстраили интроверсии.

ЭФФЕКТЫ ИЗМЕНЕНИЯ ВРЕМЯЗАДАВАТЕЛЕЙ

Биологические ритмы отличаются большой стойкостью, изменение привычных ритмов времязадавателей далеко не сразу сдвигает биоритмы и приводит к десинхронозу.

Десинхроноз - рассогласование циркадианных ритмов - нарушение исходной архитектоники циркадианной системы организма. При нарушении синхронизации ритмов организма и датчиков времени (внешний десинхроноз) организм вступает в стадию тревоги (внутренний десинхроноз). Сущность внутреннего десинхроноза заключается в рассогласовании по фазе циркадианных ритмов организма, в результате чего возникают различные нарушения его благополучия: расстройства сна, снижение аппетита, ухудшение самочувствия, настроения, падение работоспособности, невротические расстройства и даже органические заболевания (гастриты, язвенная болезнь и др.). Наиболее ярко перестройка биоритмов проявляется при быстрых перемещениях (авиаперелётах) в глобальном масш-табе.

Дальние перемещения вызывают выраженный десинхроноз, характер и глубина которого определяются: направлением, временем, длительностью перелёта; индивидуальными особенностями организма; трудовыми нагрузками; климатическим контрастом и т.д. Выделено пять типов перемещений (рис. 4-3).

Рис. 4-3. Хронофизиологическая классификация типов перемещения:

1 - трансмеридианное; 2 - трансширотное; 3 - диагональное (смешанное);

4 - трансэкваториальное; 5 - асинхронное. (В.А. Матюхин и др., 1999)

Трансмеридианное перемещение (1). Главный показатель такого перемещения - угловая скорость движения, выражаемая в градусах долготы. Её можно измерять числом часовых поясов (15?), пересечённых за сутки.

Если скорость перемещения превышает 0,5 часового пояса за сутки, возникает внешний десинхроноз - разность фаз фактического и должного максимумов суточной кривой физиологических функций.

Смена 1-2 часовых поясов не вызывает десинхронизации (имеется зона нечувствительности, в пределах которой фазовая десинхронизация не проявляется). При перелётах через 1-2 часовых пояса типичные для фазовой десинхронизации уплощения суточных колебаний физиологических функций не отмечаются, и ритм мягко «затягивается» внешними датчиками времени.

При дальнейшем перемещении на восток или запад фазовое рассогласование возрастает как функция времени. На разных географических широтах критическая угловая скорость достигается при различных линейных скоростях перемещения: в приполярных широтах даже при небольших скоростях, соответствующих скорости движения пешехода, не исключено возникновение десинхронизации. Практически скорость всех транспортных средств существенно превышает 0,5 угловых часа в сутки. Эффект десинхронизации биологических ритмов проявляется при таком типе перемещений в наиболее выраженной форме.

При скорости перемещения, превышающей три и более часовых поясов в сутки, внешние синхронизаторы уже не в состоя- нии «затягивать» циркадианные колебания физиологических функций и наступает десинхроноз.

Трансширотное перемещение (2) - вдоль меридиана, с юга на север или с севера на юг - не вызывая фазового рассогласования датчиков, даёт эффект, воспринимаемый как рассогласование фактической и ожидаемой амплитуд синхронизаторов. При этом изменяются фазы годового ритма, проявляется сезонная десинхронизация.

На первое место при таких перемещениях выступает несоответствие сезонной готовности физиологических систем тре- бованиям иного сезона в новом месте. Фазового рассогласования ритмов внешних датчиков и биоритмов организма нет, но не совпадают их суточные амплитуды.

Дальность перемещения, при которой климатические условия и структура фотопериодизма на новом месте начинают вызывать напряжение механизмов поддержания сезонного ритма физиологических функций, зависит от географической широты: оценка ширины зоны нечувствительности показывает, что она может изменяться от 1400 км у экватора до 150 км на широте 80?.

- «Окно хронофизиологической нечувствительности», его линейные и угловые размеры зависят от широты. Скорость, выраженная в числе «окон», пересекаемых за сутки, будет при равной линейной скорости возрастать по направлению от экватора к полюсу до очень больших величин. Сужение

«окна» по мере движения к северу - важное обстоятельство, свидетельствующее о повышенной хронофизиологической напряжённости при перемещениях в приполярных широтах по сравнению с низкими или средними широтами.

Перемещение по диагонали (3) подразумевает изменение долготы и широты, большой климатический контраст и значительные изменения поясного времени. Эти перемещения не являются простой суммой (суперпозицией) эффектов «горизонтального» (1) и «вертикального» (2) перемещения. Это сложный комплекс хронобиологических раздражителей, реакция на который может существенно отличаться от реакций на каждый вид десинхронизации, рассматриваемый изолированно.

Перемещение в другое полушарие (4) с пересечением экваториальной зоны. Главный воздействующий фактор такого перемещения - контрастная смена сезона, вызывающая глубокий сезонный десинхроноз, смещение и инвертирование фазы годового цикла физиологических функций.

Пятый тип перемещений - хроноэкологический режим, при котором колебательные свойства среды резко ослаблены или полностью отсутствуют. К таким перемещениям относятся:

Орбитальные полёты;

Пребывание в условиях с резко ослабленными суточными и сезонными синхронизаторами (подводных лодках, космических кораблях);

Вахтовые режимы труда со скользящим графиком смен и т.д. Среды такого типа предложено называть «асинхронными». Воздействие подобной «хронодепривации» вызывает грубые нарушения суточной и другой периодики.

СУБЪЕКТИВНОСТЬ ВОСПРИЯТИЯ ВРЕМЕНИ

Течение времени воспринимается субъективно, в зависимости от интенсивности физической или психической деятельности каждого отдельного индивидуума. Время как бы становится более ёмким при большей занятости или при необходимости принять правильное решение в экстремальной ситуации.

За считанные секунды человек успевает проделать сложнейшую работу. Например, лётчик в аварийной ситуации принимает решение изменить тактику управления самолётом. При этом он

мгновенно учитывает и сопоставляет динамику развития многочисленных факторов, влияющих на условия полёта.

В процессе изучения субъективного восприятия времени исследователи применяли тест «индивидуальная минута». Человек по сигналу отсчитывает секунды, а экспериментатор следит за стрелкой секундомера. Оказалось, что у одних «индивидуальная минута» короче истинной, у других - длинней, расхождения в ту или иную сторону могут быть весьма значительными.

БИОЛОГИЧЕСКИЕ РИТМЫ В РАЗНЫХ КЛИМАТОГЕОГРАФИЧЕСКИХ УСЛОВИЯХ

Высокогорье. В условиях высокогорья околосуточные ритмы гемодинамики, дыхания, газообмена зависят от метеофакторов и изменяются прямо пропорционально изменениям температуры воздуха и скорости ветра и обратно пропорционально изменениям атмосферного давления и относительной влажности воздуха.

Высокие широты. Специфические свойства полярного климата и особенности среды определяют особенности биоритмов у жителей:

В период полярной ночи отсутствуют достоверные циркадианные колебания потребления кислорода. Поскольку зна- чение коэффициента использования кислорода отражает интенсивность энергообмена, то снижение размаха колебаний потребления кислорода во время полярной ночи является косвенным свидетельством в пользу фазового рассогласования различных энергозависимых процессов.

У жителей Крайнего Севера и у полярников в период полярной ночи (зимой) наблюдают снижение амплитуды суточного ритма температуры тела и смещение акрофазы на вечерние часы, а весной и летом - на дневные и утренние часы.

Аридная зона. При адаптации человека к пустыне ритмические колебания условий окружающей среды приводят к синхронизации ритмики функционального состояния организма с этими колебаниями. Таким путём достигается частичная оптимизация деятельности компенсаторных механизмов в экстремальных условиях среды. Например, акрофаза ритма средневзвешенной температуры кожи приходится на 16 ч 30 мин, что практически совпадает с максимумом температуры воздуха, температура тела

достигает максимума в 21 ч, коррелируя с максимумом теплообразования.

МЕТОДЫ СТАТИСТИЧЕСКОЙ ОЦЕНКИ В ХРОНОБИОЛОГИИ

Косинусоидальная функция. Простейшим периодическим процессом является гармонический колебательный процесс, описываемый косинусоидальной функцией (рис. 4-4):

Рис. 4-4. Основные элементы гармонического (косинусоидального) колебательного процесса: М - уровень; Т - период; ρ A , ρ B , αφ A ,αφ B - амплитуды и фазы процессов А и В; 2ρ A - размах процесса А; αφ Ч - разность фаз процессов А и В

x(t) = М + рХcos2π/ТХ(t-αφ Ч),

где:

М - постоянная составляющая; ρ - амплитуда колебаний; Т - период, ч; t - текущее время, ч; аαφ Ч - фаза, ч.

При анализе биоритмов обычно ограничиваются первым членом ряда - гармоникой с периодом, равным 24 ч. Иногда учитывается также гармоника с периодом 12 ч. В результате аппроксимации временной ряд оказывается представленным небольшим числом обобщённых параметров - уровнем М, амплитудой р, фазой αφ.

Фазовые соотношения между двумя гармоническими колебательными процессами могут быть различными. Если фазы двух процессов одинаковы, они называются синфазными, если разница между фазами равна Т/2, - противофазными. О фазовом опережении или фазовом отставании одного гармонического процесса А относительно другого В, говорят тогда, когда αφ A <αφ B или αφ A >αφ B соответственно.

Описанные параметры, строго говоря, можно использовать только применительно к гармоническому колебательному процессу. Фактически суточная кривая отличается от математической модели: она может быть несимметричной относительно среднего уровня, а интервал между максимумом и минимумом, в отличие от косинусоиды, оказаться равным не 12 ч и т.д. Ввиду указанных причин использование этих параметров для описания реального колебательного периодического или близкого к периодическому процессу требует известной осторожности.

Хронограммы. Наряду с гармонической аппроксимацией временного ряда широко используется традиционный метод представления результатов биоритмологического исследования в виде суточных хронограмм, т.е. усреднённых по множеству индивидуальных замеров суточных кривых. На хронограмме одновременно со средним значением показателя на определённый час суток указывается доверительный интервал в виде среднеквадратического отклонения или ошибки среднего.

В литературе встречается несколько типов хронограмм. Если дисперсия индивидуальных уровней велика, периодическая компонента может оказаться замаскированной. В таких случаях применяют предварительное нормирование суточных кривых, так что усреднению подвергаются не абсолютные значения амплитуды р, а относительные (p/M). Для некоторых показателей хронограмма исчисляется в долях (процентах) общего суточного объё- ма потребления или выделения некоторого субстрата (например, потребления кислорода или выделения калия с мочой).

Хронограмма даёт достаточно наглядное представление о характере суточных кривых. Путём анализа хронограммы можно приблизительно определить фазу колебаний, абсолютную и относительную амплитуду, а также их доверительные интервалы.

Косинор - статистическая модель биоритмов, основанная на аппроксимации кривой колебаний физиологического показателя

гармонической функцией - косинор-анализа. Назначение косиноранализа - представление индивидуальных и массовых биоритмо- логических данных в сопоставимой унифицированной и доступной для статистических оценок форме. Суточные косинор-параметры характеризуют выраженность биоритма, переходные процессы при его перестройке, наличие статистически значимого отличия одних групп от других.

Косинор-анализ имеет очевидные преимущества по сравнению с методом хронограмм, поскольку он позволяет использовать для анализа структуры биоритмов корректные статистические методы.

Косинор-анализ выполняют в два этапа:

На первом этапе индивидуальные суточные кривые аппроксимируют гармонической (косинусоидой) функцией, в результате чего определяют основные параметры биоритма - среднесуточный уровень, амплитуду и акрофазу;

На втором этапе производят векторное усреднение индивидуальных данных, определяют математическое ожидание и доверительные интервалы амплитуды и акрофазы суточных колебаний изучаемого показателя.

ВОПРОСЫ ДЛЯ САМОКОНТРОЛЯ

1. Приведите примеры временных параметров организма и его систем?

2. В чём сущность синхронизации работы различных систем организма?

3. Что такое биологический ритм? Какие он имеет характеристики?

4. Какие классификации биоритмов вы можете привести? В чём принципиальное отличие разных типов биоритмов?

5. Назовите механизмы ритмогенеза.

6. Какие ритмы психической активности вы знаете?

7. Что происходит при устранении или изменении времязадавателей?

8. Какие типы перемещений вы знаете?

9. Назовите методы статистического анализа в хронобиологии.

10. В чём принципиальное отличие косинор-анализа?

Биологические ритмы

Все живое на нашей планете несет отпечаток ритмического рисунка событий, характерного для нашей Земли. В сложной системе биоритмов, от коротких - на молекулярном уровне - с периодом в несколько секунд, до глобальных, связанным с годовыми изменениями солнечной активности живет и человек. Биологический ритм представляет собой один из важнейших инструментов исследования фактора времени в деятельности живых систем и их временной организации.

Биологические ритмы или биоритмы - это более или менее регулярные изменения характера и интенсивности биологических процессов. Способность к таким изменениям жизнедеятельности передается по наследству и обнаружена практически у всех живых организмов. Их можно наблюдать в отдельных клетках, тканях и органах, в целых организмах и в популяциях. [

Выделим следующие важные достижения хронобиологии:

1. Биологические ритмы обнаружены на всех уровнях организации живой природы - от одноклеточных до биосферы. Это свидетельствует о том, что биоритмика - одно из наиболее общих свойств живых систем.

2. Биологические ритмы признаны важнейшим механизмом регуляции функций организма, обеспечивающим гомеостаз, динамическое равновесие и процессы адаптации в биологических системах.

3. Установлено, что биологические ритмы, с одной стороны, имеют эндогенную природу и генетическую регуляцию, с другой, их осуществление тесно связано с модифицирующим фактором внешней среды, так называемых датчиков времени. Эта связь в основе единства организма со средой во многом определяет экологические закономерности.

4. Сформулированы положения о временной организации живых систем, в том числе - человека - одним из основных принципов биологической организации. Развитие этих положений очень важно для анализа патологических состояний живых систем.

5. Обнаружены биологические ритмы чувствительности организмов к действию факторов химической (среди них лекарственные средства) и физической природы. Это стало основой для развития хронофармакологии, т.е. способов применения лекарств с учетом зависимости их действия от фаз биологических ритмов функционирования организма и от состояния его временной организации, изменяющейся при развитии болезни.

6. Закономерности биологических ритмов учитывают при профилактике, диагностике и лечении заболеваний.

Биоритмы подразделяются на физиологические и экологические. Физиологические ритмы, как правило, имеют периоды от долей секунды до нескольких минут. Это, например, ритмы давления, биения сердца и артериального давления. Имеются данные о влиянии, например, магнитного поля Земли на период и амплитуду энцефалограммы человека.

Экологические ритмы по длительности совпадают с каким-либо естественным ритмом окружающей среды. К ним относятся суточные, сезонные (годовые), приливные и лунные ритмы. Благодаря экологическим ритмам, организм ориентируется во времени и заранее готовится к ожидаемым условиям существования. Так, некоторые цветки раскрываются незадолго до рассвета, как будто зная, что скоро взойдет солнце. Многие животные еще до наступления холодов впадают в зимнюю спячку или мигрируют. Таким образом, экологические ритмы служат организму как биологические часы.

Ритм - это универсальное свойство живых систем. Процессы роста и развития организма имеют ритмический характер. Ритмическим изменениям могут быть подвержены различные показатели структур биологических объектов: ориентация молекул, третичная молекулярная структура, тип кристаллизации, форма роста, концентрация ионов и т. д. Установлена зависимость суточной периодики, присущей растениям, от фазы их развития. В коре молодых побегов яблони был выявлен суточный ритм содержания биологически активного вещества флоридзина, характеристики которого менялись соответственно фазам цветения, интенсивного роста побегов и т. д. Одно из наиболее интересных проявлений биологического измерения времени - суточная периодичность открывания и закрывания цветков и растений. Каждое растение "засыпает" и "просыпается" в строго определенное время суток. Рано утром (в 4 часа) раскрывают свои цветки цикорий и шиповник, в 5 часов - мак, в 6 часов - одуванчик, полевая гвоздика, в 7 часов - колокольчик, огородный картофель, в 8 часов бархатцы и вьюнки, в 9-10 часов - ноготки, мать-и-мачеха. Существуют и цветы, раскрывающие свои венчики ночью. В 20 часов раскрываются цветки душистого табака, а в 21 час - горицвета и ночной фиалки. Так же в строго определенное время и закрываются цветки: в полдень - осот полевой, в 13-14 часов - картофель, в 14-15 часов -одуванчик, в 15-16 часов - мак, в 16-17 часов -ноготки, в 17-18 часов мать-и-мачеха, в 18-19 часов - лютик, в 19-20 часов - шиповник. Раскрытие и закрытие цветков зависит и от многих условий, например, от географического положения местности или времени восхода и заката солнца.

Существуют ритмические изменения чувствительности организма к повреждающим факторам внешней среды. В опытах на животных было установлено, что чувствительность к химическим и лучевым поражениям колеблется в течение суток очень заметно: при одной и той же дозе смертность мышей в зависимости от времени суток варьировала от 0 до 10 %

Важнейшим внешним фактором, влияющим на ритмы организма, является фотопериодичность. У высших животных предполагается существование двух способов фотопериодической регуляции биологических ритмов: через органы зрения и далее через ритм двигательной активности организма и путем экстрасенсорного восприятия света. Существует несколько концепций эндогенного регулирования биологических ритмов: генетическая регуляция, регуляция с участием клеточных мембран. Большинство ученых склоняются к мнению о полигенном контроле над ритмами. Известно, что в регуляции биологических ритмов принимают участие не только ядро, но и цитоплазма клетки.

Центральное место среди ритмических процессов занимает циркадианный ритм, имеющий наибольшее значение для организма. Понятие циркадианного (околосуточного) ритма ввел в 1959 году Халберг. Циркадианный ритм является видоизменением суточного ритма с периодом 24 часа, протекает в константных условиях и принадлежит к свободно текущим ритмам. Это ритмы с не навязанным внешними условиями периодом. Они врожденные, эндогенные, т.е. обусловлены свойствами самого организма. Период циркадианных ритмов длится у растений 23-28 часов, у животных 23-25 часов. Поскольку организмы обычно находятся в среде с циклическими изменениями ее условий, то ритмы организмов затягиваются этими изменениями и становятся суточными.

Циркадианные ритмы обнаружены у всех представителей животного царства и на всех уровнях организации - от клеточного давления до межличностных отношений. В многочисленных опытах на животных установлено наличие циркадианных ритмов двигательной активности, температуры тела и кожи, частоты пульса и дыхания, кровяного давления и диуреза. Суточным колебаниям оказались подвержены содержания различных веществ в тканях и органах, например, глюкозы, натрия и калия в крови, плазмы и сыворотки в крови, гормонов роста и др. По существу, в околосуточном ритме колеблются все показатели эндокринные и гематологические, показатели нервной, мышечной, сердечно-сосудистой, дыхательной и пищеварительной систем. В этом ритме содержание и активность десятков веществ в различных тканях и органах тела, в крови, моче, поте, слюне, интенсивность обменных процессов, энергетическое и пластическое обеспечение клеток, тканей и органов. Этому же циркадианному ритму подчинены чувствительность организма к разнообразным факторам внешней среды и переносимость функциональных нагрузок. Всего к настоящему времени у человека выявлено около 500 функций и процессов, имеющих циркадианную ритмику.

Биоритмы организма - суточные, месячные, годовые - практически остались неизменными с первобытных времен и не могут угнаться за ритмами современной жизни. У каждого человека в течение суток четко прослеживаются пики и спады важнейших жизненных систем. Важнейшие биоритмы могут быть зафиксированы в хронограммах. Основными показателями в них служат температура тела, пульс, частота дыхания в покое и другие показатели, которые можно определить только при помощи специалистов. Знание нормальной индивидуальной хронограммы позволяет выявить опасности заболевания, организовать свою деятельность в соответствии с возможностями организма, избежать срывов в его работе.

Самую напряженную работу надо делать в те часы, когда главнейшие системы организма функционируют с максимальной интенсивностью. Если человек "голубь", то пик работоспособности приходится на три часа дня. Если "жаворонок" - то время наибольшей активности организма падает на полдень. "Совам" рекомендуется самую напряженную работу выполнять в 5-6 часов вечера.

О влиянии 11-летнего цикла солнечной активности на биосферу Земли сказано много. Но не все знают о тесной зависимости, существующей между фазой солнечного цикла и антропометрическими данными молодежи. Киевские исследователи провели статистический анализ показателей массы тела и роста юношей, приходивших на призывные участки. Оказывается, что акселерация весьма подвержена солнечному циклу: тенденция к повышению модулируется волнами, синхронными с периодом "переполюсовки " магнитного поля Солнца (а это удвоенный 11-летний цикл, т.е. 22 года). Кстати, в деятельности Солнца выявлены и более длительные периоды, охватывающие несколько столетий.

Важное практическое значение имеет также исследование других многодневных (околомесячных, годовых и пр.) ритмов, датчиком времени для которых являются такие периодические изменения в природе, как смена сезонов, лунные циклы и др.

В последние годы широкую популярность приобрела теория "трех ритмов", в основе которой лежит теория о полной независимости этих многодневных ритмов как от внешних факторов, так и от возрастных изменений самого организма. Пусковым механизмом этих исключительных ритмов является только момент рождения (по другим вариантам - момент зачатия) человека. Родился человек, и возникли ритмы с периодом в 23, 28 и 33 суток, определяющие уровень его физической, эмоциональной и интеллектуальной активности. Графическим изображением этих ритмов является синусоида. Однодневные периоды, в которые происходит переключение фаз ("нулевые" точки на графике) и которые якобы отличаются снижением соответствующего уровня активности, получили название критических дней. Если одну и ту же "нулевую" точку пересекают одновременно две или три синусоиды, то такие "двойные " или "тройные " критические дни особенно опасны.

Многократные исследования, проведенные с целью проверки этой гипотезы, не подтвердили, однако, существование этих сверхуникальных биоритмов. Сверхуникальных потому, что у животных аналогичных ритмов не выявлено; никакие известные биоритмы не укладываются в идеальную синусоиду; периоды биоритмов не постоянны и зависят как от внешних условий, так и от возрастных изменений; в природе не обнаружено явлений, которые являлись бы синхронизаторами для всех людей и в то же время были "персонально " зависимы от дня рождения каждого человека.

Специальные исследования колебаний функционального состояния людей показали, что они никак не связаны с датой рождения. Подобные исследования спортсменов, проведенные в нашей стране, в США и других странах, не подтвердили связи уровня работоспособности и спортивных результатов с ритмами, предлагаемыми в гипотезе. Показано отсутствие всякой связи различных несчастных случаев на производстве, аварий и других дорожно-транспортных происшествий с критическими днями людей - виновников этих событий. Проверены также методы статистической обработки данных, свидетельствовавших якобы о наличии трех ритмов, и установлена ошибочность этих методов. Таким образом, гипотеза "трех биоритмов " не находит подтверждения. Однако ее появление и разработка имеют положительное значение, так как привлекли внимание к актуальной проблеме - исследованию многодневных биоритмов, отражающих влияние на живые организмы космических факторов (Солнца, Луны, других планет) и играющих важную роль в жизни и деятельности человека.

Существуют внутренние биологические часы, которые так же влияют на состояние организма. Когда человек испытывает прилив энергии, внутренние органы взаимодействуют между собой. Возбуждение прекращается спустя 24 часа . Из этого длительного периода в состоянии полной активности человек находится только в течение двух часов. Этот короткий этап сопровождается массовыми в организме, а так же выплеском энергии.

Специалисты выделяют три группы биоритмов, в зависимости от их частоты.

  1. Высокочастотные ритмы с периодом не более 30 минут. К ним относятся биоритмы дыхания, мозга, кишечника;
  2. Ритмы средней частоты с периодом от 40 минут до 7 суток. К этой группе относятся изменения температуры, давления, кровообращения;
  3. Низкочастотные ритмы с периодом от 10 дней до нескольких месяцев.

Активность органов человека

Каждый орган в человеке представляет собой отдельную полноценную единицу, состояние зависит от смены дня и ночи. Все органы активны в разное время:

  1. печень – с 1 до 3 часов ночи;
  2. система кровообращения – с 19 до 21 часа вечера;
  3. желудок – с 7 до 9 часов утра;
  4. сердце – с 11 до 13 часов дня;
  5. почки – с 17 до 19 часов вечера;
  6. половые органы – с 19 до 21 часа;
  7. мочевой пузырь – с 15 до 17 часов дня.

Работа всех органов кровообращения в течение суток меняется. Примерно в час дня и в 9 часов вечера их работа значительно замедляется. В это время лучше не заниматься физическими упражнениями. Так же свой ритм существует и в системе органов пищеварения. В утренние часы желудок очищается и нуждается в большом количестве . В вечернее время усиливается деятельность желудка и почек. В замедленном режиме органы пищеварения функционируют с 2 до 5 часов ночи. Для того чтобы не нарушать ритмы системы пищеварения следует следить за рационом питания и соблюдать время приема пищи и ее количество. Первую часть дня должно поступать достаточное количество белковой и жирной пищи. Ближе к вечеру употребляйте продукты богатые углеводами.

На протяжении суток меняются и такие показатели как температура тела, вес, давление и дыхание. Наиболее высокая температура и давление наблюдаются в период с 6 до 7 часов вечера. Максимальный вес тела обычно в 8 часов вечера, а объем дыхания – в час дня . Низкая температура тела влияет на замедление всех процессов в организме, а жизнь человека в этот период продлевается. Когда человек болеет, его температура увеличивается, часы идут гораздо быстрее.

Лучше всего заниматься физическими упражнениями в период с 10 до 12 часов или с 16 до 18 часов дня. В это время организм полон энергии и сил. Умственная деятельность в это время так же . Творческий подъем наблюдается с 12 до часу ночи. Самые высокие показатели активности в организме человека приходятся на 5-6 часов утра. Многие в это время встают на работу и это правильно. В медицинских учреждениях говорят о том, что роды у женщины в это время проходят безболезненно и спокойно.

Биоритмы во время сна

С детства родители всегда приучают детей ложиться спать с 21 до 23 часов . В это время все процессы жизнедеятельности замедляются, и происходит упадок сил. Если в это время не удалось заснуть, то дальше сделать это будет еще проблематичнее, ведь чем ближе к 24 часам , тем больше возрастает активность. Людям с бессонницей знать об этом особенно полезно. Если не получается ложиться спать в 9 часов вечера, то хотя бы старайтесь это делать в одно и тоже время. Здоровый сон должен длиться 8 часов . Критическим периодом является сон 4-5 часов , это жизненно необходимо для любого организма. Нормальный здоровый человек должен засыпать за 10-15 минут .

На голодный желудок сложно уснуть, поэтому можно организовать небольшой второй ужин, к примеру, съесть яблоко, йогурт или выпить стакан кефира. Главное не переедать. Многие знают, что ночные кошмары напрямую связаны с состоянием и здоровьем человека. Причиной плохого сна могут стать сердечно-сосудистые заболевания. Перед сном следует хорошенько проветрить помещение, ведь в большинстве случае человек храпит из-за недостатка кислорода. Многие не запоминают свои сны, это является положительной характеристикой, так как организм был полностью расслаблен и функция памяти не работала.

Для того чтобы все процессы в организме работали правильно, соблюдайте режим дня. Самым лучшим началом дня будет 6 утра . Контрастный душ и небольшая разминка взбодрит и поможет проснуться. В 7-8 часов утра повышается количество активных веществ. Аллергикам следует быть осторожными в это время. Ни в коем случае нельзя употреблять алкоголь, в этот период организм к этому просто не готов. Самым полезным завтрак будет в период с 7 до 9 утра .

Позавтракать можно , так и на работе, главное чтобы пища не была слишком тяжелой. Антицеллюлитными процедурами лучше всего заняться с 10 до 13 часов . В это время вы добьетесь наибольшего эффекта и результата. Минимальная чувствительность кожи в 9 утра , поэтому от ухода за кожей лица и тела будет мало толку.

С 9 до 10 вечера человек наиболее активен, он с легкостью решает всевозможные умственные задачи. Обед должен быть с 13 до 14 часов дня, так как в это время выделяется самое большое количество желудочного сока. Организм является уязвимым с 13 до 17 часов . Рабочий день должен заканчивается в период с 18 до 19 часов .

Правильно говорят, что после 6 часов вечера есть нельзя, ведь в это время процессы пищеварения значительно замедляются. В позднее время кушать нельзя, так как организм должен отдыхать и не переваривать пищу, к тому же полностью она перевариться все равно не сможет. Полезным фактом для студентов и школьников будет то, что лучше всего память работает с 9 до 10 часов вечера.

Биологические часы

Сам человек может выстроить свои биологические часы, достаточно лишь отказаться от вредных привычек и следить за своей жизнедеятельностью. Работа, сон, отдых и прием пищи каждый день должны быть в одно время. Вредные привычки и неполноценный сон сбивают все биоритмы, нарушая жизнедеятельность организма. Работать всегда следует при хорошей освещенности, желательно при дневном свете. В течение суток человек всегда должен получать достаточное количество теплового облучения.

Специалистами доказано, что уровень здоровья человека гораздо выше, если он соблюдает биологические ритмы.